hkivancoral's picture
End of training
b2a35c2
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8616666666666667

smids_1x_deit_small_sgd_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3679
  • Accuracy: 0.8617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9928 1.0 75 0.9393 0.6083
0.8712 2.0 150 0.8295 0.6433
0.7828 3.0 225 0.7388 0.7083
0.6696 4.0 300 0.6714 0.7567
0.6657 5.0 375 0.6202 0.7767
0.5692 6.0 450 0.5823 0.7883
0.568 7.0 525 0.5504 0.795
0.5196 8.0 600 0.5262 0.805
0.5314 9.0 675 0.5056 0.8167
0.4867 10.0 750 0.4885 0.8183
0.4734 11.0 825 0.4740 0.8183
0.4623 12.0 900 0.4619 0.8267
0.4683 13.0 975 0.4510 0.835
0.4153 14.0 1050 0.4430 0.8317
0.3992 15.0 1125 0.4360 0.8333
0.3763 16.0 1200 0.4269 0.845
0.3576 17.0 1275 0.4206 0.85
0.3638 18.0 1350 0.4146 0.845
0.3788 19.0 1425 0.4098 0.8433
0.333 20.0 1500 0.4060 0.85
0.3671 21.0 1575 0.4016 0.85
0.3178 22.0 1650 0.3983 0.8533
0.3335 23.0 1725 0.3950 0.8467
0.3527 24.0 1800 0.3923 0.8533
0.3211 25.0 1875 0.3897 0.8483
0.3209 26.0 1950 0.3876 0.855
0.2907 27.0 2025 0.3854 0.8517
0.3294 28.0 2100 0.3833 0.86
0.2805 29.0 2175 0.3818 0.8533
0.3183 30.0 2250 0.3799 0.855
0.2622 31.0 2325 0.3784 0.86
0.3165 32.0 2400 0.3771 0.86
0.2898 33.0 2475 0.3761 0.8617
0.2776 34.0 2550 0.3750 0.8617
0.2847 35.0 2625 0.3739 0.8633
0.2631 36.0 2700 0.3731 0.86
0.2584 37.0 2775 0.3723 0.8583
0.2889 38.0 2850 0.3718 0.8617
0.3213 39.0 2925 0.3709 0.8617
0.2873 40.0 3000 0.3704 0.865
0.284 41.0 3075 0.3700 0.865
0.2939 42.0 3150 0.3694 0.8633
0.3121 43.0 3225 0.3692 0.8633
0.2744 44.0 3300 0.3688 0.8617
0.2881 45.0 3375 0.3686 0.8617
0.302 46.0 3450 0.3683 0.8617
0.2645 47.0 3525 0.3682 0.8617
0.307 48.0 3600 0.3681 0.8617
0.2733 49.0 3675 0.3680 0.8617
0.2676 50.0 3750 0.3679 0.8617

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0