hkivancoral's picture
End of training
e062a34
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.84

smids_1x_deit_tiny_adamax_001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6471
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7464 1.0 75 0.5642 0.795
0.5514 2.0 150 0.5108 0.8017
0.3856 3.0 225 0.5385 0.8033
0.4541 4.0 300 0.4488 0.825
0.4047 5.0 375 0.4448 0.815
0.2699 6.0 450 0.5321 0.8267
0.3444 7.0 525 0.4477 0.8367
0.1984 8.0 600 0.5491 0.81
0.1797 9.0 675 0.7263 0.8167
0.1145 10.0 750 0.6218 0.8317
0.1353 11.0 825 0.7800 0.8183
0.1658 12.0 900 0.6252 0.835
0.101 13.0 975 0.8640 0.805
0.0897 14.0 1050 0.9357 0.8
0.0267 15.0 1125 1.0487 0.8283
0.0597 16.0 1200 1.0545 0.8283
0.0984 17.0 1275 0.9221 0.83
0.0994 18.0 1350 0.9468 0.8367
0.0261 19.0 1425 1.1404 0.8117
0.0439 20.0 1500 1.1737 0.8233
0.0258 21.0 1575 1.1898 0.8383
0.0027 22.0 1650 1.4604 0.8217
0.0296 23.0 1725 1.3681 0.8267
0.004 24.0 1800 1.5826 0.83
0.0296 25.0 1875 1.2731 0.8167
0.0022 26.0 1950 1.4166 0.83
0.0213 27.0 2025 1.3755 0.8433
0.0191 28.0 2100 1.6417 0.82
0.0068 29.0 2175 1.3938 0.8417
0.0003 30.0 2250 1.4213 0.8317
0.0002 31.0 2325 1.4622 0.8417
0.0 32.0 2400 1.5110 0.8367
0.0291 33.0 2475 1.4845 0.8383
0.0005 34.0 2550 1.5757 0.8333
0.0089 35.0 2625 1.6525 0.83
0.0053 36.0 2700 1.6166 0.84
0.0078 37.0 2775 1.5899 0.8467
0.0 38.0 2850 1.6250 0.8433
0.0004 39.0 2925 1.6311 0.8433
0.0 40.0 3000 1.6268 0.8433
0.0032 41.0 3075 1.6310 0.8417
0.0 42.0 3150 1.6322 0.84
0.0 43.0 3225 1.6387 0.84
0.0 44.0 3300 1.6405 0.84
0.0 45.0 3375 1.6426 0.84
0.0 46.0 3450 1.6435 0.84
0.0 47.0 3525 1.6443 0.84
0.0 48.0 3600 1.6452 0.84
0.0 49.0 3675 1.6465 0.84
0.0 50.0 3750 1.6471 0.84

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0