hkivancoral's picture
End of training
cd5d93a
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.38333333333333336

smids_1x_deit_tiny_sgd_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2082
  • Accuracy: 0.3833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3468 1.0 75 1.3684 0.345
1.2941 2.0 150 1.3595 0.3433
1.2835 3.0 225 1.3508 0.3433
1.3718 4.0 300 1.3426 0.345
1.2334 5.0 375 1.3348 0.345
1.2846 6.0 450 1.3274 0.3467
1.2876 7.0 525 1.3202 0.3483
1.2894 8.0 600 1.3134 0.3483
1.3322 9.0 675 1.3070 0.3483
1.3642 10.0 750 1.3007 0.35
1.2885 11.0 825 1.2947 0.3517
1.2098 12.0 900 1.2891 0.3517
1.2493 13.0 975 1.2838 0.35
1.2305 14.0 1050 1.2787 0.3517
1.2559 15.0 1125 1.2739 0.355
1.216 16.0 1200 1.2692 0.3567
1.2252 17.0 1275 1.2648 0.3583
1.2555 18.0 1350 1.2606 0.36
1.207 19.0 1425 1.2567 0.3583
1.163 20.0 1500 1.2528 0.3583
1.2799 21.0 1575 1.2493 0.3617
1.2576 22.0 1650 1.2460 0.3633
1.259 23.0 1725 1.2428 0.3617
1.2102 24.0 1800 1.2399 0.365
1.206 25.0 1875 1.2370 0.3633
1.2525 26.0 1950 1.2343 0.3683
1.2063 27.0 2025 1.2318 0.3683
1.2191 28.0 2100 1.2294 0.3683
1.2117 29.0 2175 1.2273 0.3683
1.2241 30.0 2250 1.2252 0.37
1.2256 31.0 2325 1.2233 0.3733
1.123 32.0 2400 1.2215 0.3767
1.1778 33.0 2475 1.2198 0.3767
1.2098 34.0 2550 1.2183 0.3817
1.1496 35.0 2625 1.2169 0.3783
1.2108 36.0 2700 1.2156 0.3833
1.2173 37.0 2775 1.2145 0.3817
1.177 38.0 2850 1.2134 0.38
1.1989 39.0 2925 1.2125 0.3783
1.2161 40.0 3000 1.2116 0.3783
1.2506 41.0 3075 1.2109 0.3783
1.2753 42.0 3150 1.2102 0.38
1.215 43.0 3225 1.2097 0.38
1.196 44.0 3300 1.2092 0.38
1.1971 45.0 3375 1.2089 0.3817
1.1869 46.0 3450 1.2086 0.3833
1.1695 47.0 3525 1.2084 0.3833
1.19 48.0 3600 1.2083 0.3833
1.1265 49.0 3675 1.2082 0.3833
1.1801 50.0 3750 1.2082 0.3833

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0