metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_sgd_00001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.36833333333333335
smids_1x_deit_tiny_sgd_00001_fold5
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1969
- Accuracy: 0.3683
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2818 | 1.0 | 75 | 1.3526 | 0.35 |
1.2881 | 2.0 | 150 | 1.3438 | 0.35 |
1.2902 | 3.0 | 225 | 1.3353 | 0.3533 |
1.3491 | 4.0 | 300 | 1.3273 | 0.3517 |
1.2508 | 5.0 | 375 | 1.3195 | 0.355 |
1.2901 | 6.0 | 450 | 1.3122 | 0.355 |
1.2792 | 7.0 | 525 | 1.3053 | 0.3583 |
1.2973 | 8.0 | 600 | 1.2988 | 0.3583 |
1.3051 | 9.0 | 675 | 1.2924 | 0.3583 |
1.3668 | 10.0 | 750 | 1.2863 | 0.3583 |
1.2982 | 11.0 | 825 | 1.2805 | 0.3633 |
1.1991 | 12.0 | 900 | 1.2750 | 0.3617 |
1.2833 | 13.0 | 975 | 1.2699 | 0.3617 |
1.2768 | 14.0 | 1050 | 1.2648 | 0.36 |
1.2691 | 15.0 | 1125 | 1.2602 | 0.36 |
1.2029 | 16.0 | 1200 | 1.2557 | 0.3617 |
1.2189 | 17.0 | 1275 | 1.2513 | 0.3667 |
1.2814 | 18.0 | 1350 | 1.2472 | 0.3683 |
1.1777 | 19.0 | 1425 | 1.2435 | 0.37 |
1.2006 | 20.0 | 1500 | 1.2398 | 0.3683 |
1.3016 | 21.0 | 1575 | 1.2363 | 0.3717 |
1.2664 | 22.0 | 1650 | 1.2331 | 0.3683 |
1.1963 | 23.0 | 1725 | 1.2301 | 0.37 |
1.2239 | 24.0 | 1800 | 1.2272 | 0.37 |
1.1881 | 25.0 | 1875 | 1.2244 | 0.37 |
1.2397 | 26.0 | 1950 | 1.2219 | 0.3717 |
1.1817 | 27.0 | 2025 | 1.2194 | 0.3717 |
1.2303 | 28.0 | 2100 | 1.2172 | 0.3733 |
1.253 | 29.0 | 2175 | 1.2151 | 0.3733 |
1.1936 | 30.0 | 2250 | 1.2131 | 0.3733 |
1.2173 | 31.0 | 2325 | 1.2113 | 0.3733 |
1.153 | 32.0 | 2400 | 1.2096 | 0.3733 |
1.2175 | 33.0 | 2475 | 1.2080 | 0.3733 |
1.2243 | 34.0 | 2550 | 1.2065 | 0.3733 |
1.1302 | 35.0 | 2625 | 1.2052 | 0.3717 |
1.1855 | 36.0 | 2700 | 1.2040 | 0.37 |
1.1832 | 37.0 | 2775 | 1.2029 | 0.37 |
1.1866 | 38.0 | 2850 | 1.2019 | 0.365 |
1.2112 | 39.0 | 2925 | 1.2010 | 0.365 |
1.199 | 40.0 | 3000 | 1.2002 | 0.3667 |
1.1826 | 41.0 | 3075 | 1.1995 | 0.3667 |
1.2211 | 42.0 | 3150 | 1.1988 | 0.3683 |
1.2093 | 43.0 | 3225 | 1.1983 | 0.3683 |
1.2039 | 44.0 | 3300 | 1.1979 | 0.3683 |
1.1848 | 45.0 | 3375 | 1.1975 | 0.3683 |
1.2445 | 46.0 | 3450 | 1.1973 | 0.3683 |
1.1786 | 47.0 | 3525 | 1.1971 | 0.3683 |
1.1742 | 48.0 | 3600 | 1.1970 | 0.3683 |
1.1159 | 49.0 | 3675 | 1.1969 | 0.3683 |
1.1807 | 50.0 | 3750 | 1.1969 | 0.3683 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0