hkivancoral's picture
End of training
92c4b1d
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.36833333333333335

smids_1x_deit_tiny_sgd_00001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1969
  • Accuracy: 0.3683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2818 1.0 75 1.3526 0.35
1.2881 2.0 150 1.3438 0.35
1.2902 3.0 225 1.3353 0.3533
1.3491 4.0 300 1.3273 0.3517
1.2508 5.0 375 1.3195 0.355
1.2901 6.0 450 1.3122 0.355
1.2792 7.0 525 1.3053 0.3583
1.2973 8.0 600 1.2988 0.3583
1.3051 9.0 675 1.2924 0.3583
1.3668 10.0 750 1.2863 0.3583
1.2982 11.0 825 1.2805 0.3633
1.1991 12.0 900 1.2750 0.3617
1.2833 13.0 975 1.2699 0.3617
1.2768 14.0 1050 1.2648 0.36
1.2691 15.0 1125 1.2602 0.36
1.2029 16.0 1200 1.2557 0.3617
1.2189 17.0 1275 1.2513 0.3667
1.2814 18.0 1350 1.2472 0.3683
1.1777 19.0 1425 1.2435 0.37
1.2006 20.0 1500 1.2398 0.3683
1.3016 21.0 1575 1.2363 0.3717
1.2664 22.0 1650 1.2331 0.3683
1.1963 23.0 1725 1.2301 0.37
1.2239 24.0 1800 1.2272 0.37
1.1881 25.0 1875 1.2244 0.37
1.2397 26.0 1950 1.2219 0.3717
1.1817 27.0 2025 1.2194 0.3717
1.2303 28.0 2100 1.2172 0.3733
1.253 29.0 2175 1.2151 0.3733
1.1936 30.0 2250 1.2131 0.3733
1.2173 31.0 2325 1.2113 0.3733
1.153 32.0 2400 1.2096 0.3733
1.2175 33.0 2475 1.2080 0.3733
1.2243 34.0 2550 1.2065 0.3733
1.1302 35.0 2625 1.2052 0.3717
1.1855 36.0 2700 1.2040 0.37
1.1832 37.0 2775 1.2029 0.37
1.1866 38.0 2850 1.2019 0.365
1.2112 39.0 2925 1.2010 0.365
1.199 40.0 3000 1.2002 0.3667
1.1826 41.0 3075 1.1995 0.3667
1.2211 42.0 3150 1.1988 0.3683
1.2093 43.0 3225 1.1983 0.3683
1.2039 44.0 3300 1.1979 0.3683
1.1848 45.0 3375 1.1975 0.3683
1.2445 46.0 3450 1.1973 0.3683
1.1786 47.0 3525 1.1971 0.3683
1.1742 48.0 3600 1.1970 0.3683
1.1159 49.0 3675 1.1969 0.3683
1.1807 50.0 3750 1.1969 0.3683

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0