hkivancoral's picture
End of training
06a0108
|
raw
history blame
4.81 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6023294509151415

smids_1x_deit_tiny_sgd_0001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8723
  • Accuracy: 0.6023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2913 1.0 75 1.2725 0.3394
1.2246 2.0 150 1.2089 0.3444
1.1634 3.0 225 1.1639 0.3561
1.1405 4.0 300 1.1319 0.3661
1.1027 5.0 375 1.1096 0.3727
1.1314 6.0 450 1.0924 0.3960
1.1132 7.0 525 1.0784 0.4193
1.0729 8.0 600 1.0662 0.4359
1.064 9.0 675 1.0549 0.4526
1.0806 10.0 750 1.0450 0.4576
1.063 11.0 825 1.0356 0.4692
1.0489 12.0 900 1.0265 0.4792
1.0267 13.0 975 1.0180 0.4942
0.9878 14.0 1050 1.0096 0.5042
1.01 15.0 1125 1.0018 0.5058
0.9915 16.0 1200 0.9940 0.5092
0.9952 17.0 1275 0.9865 0.5158
1.0114 18.0 1350 0.9793 0.5258
1.0011 19.0 1425 0.9723 0.5308
0.9762 20.0 1500 0.9654 0.5358
1.0144 21.0 1575 0.9587 0.5408
0.9349 22.0 1650 0.9525 0.5507
0.9869 23.0 1725 0.9462 0.5557
0.9417 24.0 1800 0.9404 0.5591
0.9277 25.0 1875 0.9347 0.5591
0.9227 26.0 1950 0.9293 0.5707
0.9725 27.0 2025 0.9242 0.5674
0.9104 28.0 2100 0.9193 0.5691
0.9618 29.0 2175 0.9147 0.5774
0.8904 30.0 2250 0.9103 0.5824
0.9175 31.0 2325 0.9062 0.5840
0.916 32.0 2400 0.9024 0.5857
0.8843 33.0 2475 0.8990 0.5874
0.9346 34.0 2550 0.8956 0.5923
0.8711 35.0 2625 0.8924 0.5957
0.8808 36.0 2700 0.8897 0.5973
0.9043 37.0 2775 0.8870 0.5990
0.9738 38.0 2850 0.8847 0.5957
0.8643 39.0 2925 0.8826 0.5940
0.8918 40.0 3000 0.8806 0.5957
0.9135 41.0 3075 0.8789 0.5973
0.9187 42.0 3150 0.8773 0.5973
0.8721 43.0 3225 0.8760 0.5973
0.9047 44.0 3300 0.8749 0.5990
0.8511 45.0 3375 0.8740 0.6007
0.8649 46.0 3450 0.8732 0.6007
0.8917 47.0 3525 0.8727 0.6023
0.8901 48.0 3600 0.8724 0.6023
0.883 49.0 3675 0.8723 0.6023
0.8823 50.0 3750 0.8723 0.6023

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0