hkivancoral's picture
End of training
cf4735f
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.59

smids_1x_deit_tiny_sgd_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9030
  • Accuracy: 0.59

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2891 1.0 75 1.2964 0.35
1.1841 2.0 150 1.2323 0.3683
1.1375 3.0 225 1.1862 0.3917
1.1786 4.0 300 1.1551 0.3933
1.0678 5.0 375 1.1335 0.3867
1.1099 6.0 450 1.1171 0.41
1.0735 7.0 525 1.1035 0.43
1.0557 8.0 600 1.0918 0.4283
1.0742 9.0 675 1.0815 0.435
1.0667 10.0 750 1.0716 0.45
1.0307 11.0 825 1.0624 0.465
1.0285 12.0 900 1.0538 0.48
1.0155 13.0 975 1.0454 0.4883
1.0004 14.0 1050 1.0371 0.4983
0.9896 15.0 1125 1.0296 0.5
0.9962 16.0 1200 1.0219 0.5033
0.9993 17.0 1275 1.0142 0.51
0.982 18.0 1350 1.0069 0.5067
0.9813 19.0 1425 0.9999 0.51
0.9516 20.0 1500 0.9928 0.5183
0.9735 21.0 1575 0.9864 0.53
0.9641 22.0 1650 0.9800 0.5367
0.9696 23.0 1725 0.9741 0.5417
0.9132 24.0 1800 0.9683 0.55
0.9427 25.0 1875 0.9629 0.55
0.956 26.0 1950 0.9577 0.5483
0.9026 27.0 2025 0.9527 0.5517
0.9342 28.0 2100 0.9481 0.5517
0.9171 29.0 2175 0.9437 0.5517
0.9183 30.0 2250 0.9395 0.5517
0.9037 31.0 2325 0.9358 0.555
0.8583 32.0 2400 0.9322 0.555
0.8838 33.0 2475 0.9289 0.5567
0.9061 34.0 2550 0.9258 0.56
0.877 35.0 2625 0.9229 0.5667
0.8993 36.0 2700 0.9203 0.57
0.8879 37.0 2775 0.9178 0.575
0.9187 38.0 2850 0.9156 0.5767
0.8776 39.0 2925 0.9136 0.5817
0.8807 40.0 3000 0.9117 0.5833
0.9149 41.0 3075 0.9100 0.5867
0.9426 42.0 3150 0.9085 0.5867
0.9085 43.0 3225 0.9072 0.5883
0.8614 44.0 3300 0.9060 0.5883
0.9002 45.0 3375 0.9051 0.59
0.8489 46.0 3450 0.9043 0.59
0.8489 47.0 3525 0.9037 0.59
0.8906 48.0 3600 0.9033 0.59
0.8819 49.0 3675 0.9031 0.59
0.8423 50.0 3750 0.9030 0.59

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0