metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_sgd_0001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.59
smids_1x_deit_tiny_sgd_0001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9030
- Accuracy: 0.59
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2891 | 1.0 | 75 | 1.2964 | 0.35 |
1.1841 | 2.0 | 150 | 1.2323 | 0.3683 |
1.1375 | 3.0 | 225 | 1.1862 | 0.3917 |
1.1786 | 4.0 | 300 | 1.1551 | 0.3933 |
1.0678 | 5.0 | 375 | 1.1335 | 0.3867 |
1.1099 | 6.0 | 450 | 1.1171 | 0.41 |
1.0735 | 7.0 | 525 | 1.1035 | 0.43 |
1.0557 | 8.0 | 600 | 1.0918 | 0.4283 |
1.0742 | 9.0 | 675 | 1.0815 | 0.435 |
1.0667 | 10.0 | 750 | 1.0716 | 0.45 |
1.0307 | 11.0 | 825 | 1.0624 | 0.465 |
1.0285 | 12.0 | 900 | 1.0538 | 0.48 |
1.0155 | 13.0 | 975 | 1.0454 | 0.4883 |
1.0004 | 14.0 | 1050 | 1.0371 | 0.4983 |
0.9896 | 15.0 | 1125 | 1.0296 | 0.5 |
0.9962 | 16.0 | 1200 | 1.0219 | 0.5033 |
0.9993 | 17.0 | 1275 | 1.0142 | 0.51 |
0.982 | 18.0 | 1350 | 1.0069 | 0.5067 |
0.9813 | 19.0 | 1425 | 0.9999 | 0.51 |
0.9516 | 20.0 | 1500 | 0.9928 | 0.5183 |
0.9735 | 21.0 | 1575 | 0.9864 | 0.53 |
0.9641 | 22.0 | 1650 | 0.9800 | 0.5367 |
0.9696 | 23.0 | 1725 | 0.9741 | 0.5417 |
0.9132 | 24.0 | 1800 | 0.9683 | 0.55 |
0.9427 | 25.0 | 1875 | 0.9629 | 0.55 |
0.956 | 26.0 | 1950 | 0.9577 | 0.5483 |
0.9026 | 27.0 | 2025 | 0.9527 | 0.5517 |
0.9342 | 28.0 | 2100 | 0.9481 | 0.5517 |
0.9171 | 29.0 | 2175 | 0.9437 | 0.5517 |
0.9183 | 30.0 | 2250 | 0.9395 | 0.5517 |
0.9037 | 31.0 | 2325 | 0.9358 | 0.555 |
0.8583 | 32.0 | 2400 | 0.9322 | 0.555 |
0.8838 | 33.0 | 2475 | 0.9289 | 0.5567 |
0.9061 | 34.0 | 2550 | 0.9258 | 0.56 |
0.877 | 35.0 | 2625 | 0.9229 | 0.5667 |
0.8993 | 36.0 | 2700 | 0.9203 | 0.57 |
0.8879 | 37.0 | 2775 | 0.9178 | 0.575 |
0.9187 | 38.0 | 2850 | 0.9156 | 0.5767 |
0.8776 | 39.0 | 2925 | 0.9136 | 0.5817 |
0.8807 | 40.0 | 3000 | 0.9117 | 0.5833 |
0.9149 | 41.0 | 3075 | 0.9100 | 0.5867 |
0.9426 | 42.0 | 3150 | 0.9085 | 0.5867 |
0.9085 | 43.0 | 3225 | 0.9072 | 0.5883 |
0.8614 | 44.0 | 3300 | 0.9060 | 0.5883 |
0.9002 | 45.0 | 3375 | 0.9051 | 0.59 |
0.8489 | 46.0 | 3450 | 0.9043 | 0.59 |
0.8489 | 47.0 | 3525 | 0.9037 | 0.59 |
0.8906 | 48.0 | 3600 | 0.9033 | 0.59 |
0.8819 | 49.0 | 3675 | 0.9031 | 0.59 |
0.8423 | 50.0 | 3750 | 0.9030 | 0.59 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0