hkivancoral's picture
End of training
64863c9
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8866666666666667

smids_3x_deit_small_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8664
  • Accuracy: 0.8867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3734 1.0 225 0.3687 0.8433
0.2659 2.0 450 0.3135 0.8733
0.1931 3.0 675 0.3034 0.8767
0.143 4.0 900 0.2889 0.885
0.131 5.0 1125 0.3167 0.8833
0.0729 6.0 1350 0.3187 0.8867
0.0909 7.0 1575 0.3427 0.8833
0.081 8.0 1800 0.3465 0.885
0.0722 9.0 2025 0.4276 0.8833
0.0153 10.0 2250 0.5104 0.8767
0.0073 11.0 2475 0.5571 0.8817
0.0388 12.0 2700 0.5705 0.895
0.0128 13.0 2925 0.6043 0.8767
0.0017 14.0 3150 0.6203 0.8867
0.0016 15.0 3375 0.6463 0.8883
0.0003 16.0 3600 0.6591 0.8867
0.0001 17.0 3825 0.6914 0.8867
0.0002 18.0 4050 0.7053 0.885
0.0391 19.0 4275 0.7283 0.8867
0.0001 20.0 4500 0.7538 0.885
0.0001 21.0 4725 0.7610 0.8833
0.0001 22.0 4950 0.7539 0.885
0.0001 23.0 5175 0.7650 0.8883
0.0242 24.0 5400 0.7853 0.8817
0.0001 25.0 5625 0.7908 0.8833
0.0001 26.0 5850 0.7914 0.885
0.0001 27.0 6075 0.8136 0.8817
0.0 28.0 6300 0.8276 0.8817
0.0067 29.0 6525 0.8343 0.8817
0.0 30.0 6750 0.8302 0.885
0.0 31.0 6975 0.8207 0.885
0.0 32.0 7200 0.8405 0.8833
0.0056 33.0 7425 0.8445 0.8833
0.0 34.0 7650 0.8188 0.885
0.0026 35.0 7875 0.8428 0.885
0.0 36.0 8100 0.8431 0.8867
0.0072 37.0 8325 0.8465 0.8867
0.0 38.0 8550 0.8730 0.885
0.0 39.0 8775 0.8549 0.8867
0.0 40.0 9000 0.8617 0.8833
0.0 41.0 9225 0.8684 0.885
0.0 42.0 9450 0.8688 0.885
0.0038 43.0 9675 0.8699 0.885
0.0 44.0 9900 0.8640 0.8867
0.0 45.0 10125 0.8568 0.8867
0.0 46.0 10350 0.8661 0.885
0.0 47.0 10575 0.8676 0.8867
0.0 48.0 10800 0.8675 0.8867
0.0 49.0 11025 0.8664 0.8867
0.0 50.0 11250 0.8664 0.8867

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2