hkivancoral's picture
End of training
a8706d2
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8831385642737897

smids_3x_deit_small_adamax_001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9284
  • Accuracy: 0.8831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5541 1.0 226 0.6212 0.7379
0.2991 2.0 452 0.3577 0.8748
0.3025 3.0 678 0.3328 0.8765
0.2535 4.0 904 0.3762 0.8631
0.2002 5.0 1130 0.3237 0.8581
0.2266 6.0 1356 0.2994 0.8898
0.1986 7.0 1582 0.4068 0.8831
0.102 8.0 1808 0.5862 0.8564
0.1677 9.0 2034 0.4842 0.8431
0.0849 10.0 2260 0.4657 0.8848
0.0597 11.0 2486 0.4867 0.8698
0.0739 12.0 2712 0.4601 0.8881
0.057 13.0 2938 0.5719 0.8614
0.0476 14.0 3164 0.5741 0.8898
0.0028 15.0 3390 0.5632 0.8932
0.0442 16.0 3616 0.6974 0.8748
0.0232 17.0 3842 0.7080 0.8731
0.0139 18.0 4068 0.6478 0.8848
0.0142 19.0 4294 0.6320 0.8881
0.0278 20.0 4520 0.7359 0.8698
0.0017 21.0 4746 0.5842 0.8948
0.0064 22.0 4972 0.8360 0.8681
0.0257 23.0 5198 0.6566 0.8865
0.0027 24.0 5424 0.6515 0.8948
0.0001 25.0 5650 0.6767 0.8998
0.0009 26.0 5876 0.7783 0.8865
0.0001 27.0 6102 0.7799 0.8815
0.0004 28.0 6328 0.8472 0.8831
0.0002 29.0 6554 0.6998 0.8848
0.0 30.0 6780 0.8253 0.8815
0.0 31.0 7006 0.7884 0.8898
0.0001 32.0 7232 0.8156 0.8798
0.0032 33.0 7458 0.8222 0.8881
0.0 34.0 7684 0.8187 0.8848
0.0 35.0 7910 0.8080 0.8848
0.0 36.0 8136 0.8285 0.8798
0.0 37.0 8362 0.8277 0.8848
0.0 38.0 8588 0.8358 0.8831
0.0 39.0 8814 0.8499 0.8831
0.0 40.0 9040 0.8554 0.8798
0.0034 41.0 9266 0.8762 0.8798
0.0035 42.0 9492 0.8827 0.8798
0.0 43.0 9718 0.8772 0.8798
0.0 44.0 9944 0.8964 0.8831
0.0 45.0 10170 0.9072 0.8831
0.0 46.0 10396 0.9164 0.8815
0.0 47.0 10622 0.9219 0.8815
0.0 48.0 10848 0.9247 0.8831
0.0 49.0 11074 0.9274 0.8831
0.0 50.0 11300 0.9284 0.8831

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2