hkivancoral's picture
End of training
5c3f0f0
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_adamax_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8933333333333333

smids_3x_deit_small_adamax_001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9786
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4746 1.0 225 0.4469 0.7917
0.3712 2.0 450 0.4363 0.8183
0.2858 3.0 675 0.3457 0.8733
0.1805 4.0 900 0.4133 0.865
0.1699 5.0 1125 0.3336 0.89
0.1967 6.0 1350 0.3958 0.88
0.1372 7.0 1575 0.4702 0.87
0.1698 8.0 1800 0.3428 0.8867
0.1529 9.0 2025 0.5351 0.8583
0.0621 10.0 2250 0.5492 0.8733
0.1311 11.0 2475 0.5821 0.8767
0.1035 12.0 2700 0.6050 0.8667
0.0328 13.0 2925 0.6304 0.875
0.036 14.0 3150 0.5969 0.8983
0.0422 15.0 3375 0.6326 0.8817
0.0088 16.0 3600 0.6452 0.8733
0.0148 17.0 3825 0.5210 0.8883
0.0267 18.0 4050 0.6134 0.88
0.0523 19.0 4275 0.6448 0.8933
0.0182 20.0 4500 0.7298 0.8783
0.0004 21.0 4725 0.7641 0.8683
0.0037 22.0 4950 0.8419 0.87
0.0038 23.0 5175 0.7762 0.8817
0.0002 24.0 5400 0.7488 0.8883
0.0367 25.0 5625 0.6912 0.8767
0.0002 26.0 5850 0.6890 0.895
0.0002 27.0 6075 0.6160 0.9017
0.0001 28.0 6300 0.6922 0.8967
0.007 29.0 6525 0.8317 0.885
0.0083 30.0 6750 0.6909 0.8983
0.0048 31.0 6975 0.7613 0.8967
0.0 32.0 7200 0.8055 0.895
0.0 33.0 7425 0.8267 0.8917
0.0 34.0 7650 0.8303 0.8917
0.0 35.0 7875 0.8741 0.8967
0.0 36.0 8100 0.8381 0.8967
0.0024 37.0 8325 0.8583 0.8983
0.0 38.0 8550 0.9234 0.8917
0.0 39.0 8775 0.8565 0.8967
0.0 40.0 9000 0.8898 0.8917
0.0 41.0 9225 0.9312 0.8917
0.0 42.0 9450 0.9410 0.8933
0.0 43.0 9675 0.9514 0.8933
0.0 44.0 9900 0.9553 0.8933
0.0 45.0 10125 0.9599 0.8933
0.0 46.0 10350 0.9610 0.8933
0.0027 47.0 10575 0.9689 0.8933
0.0 48.0 10800 0.9724 0.8933
0.0 49.0 11025 0.9761 0.8933
0.0 50.0 11250 0.9786 0.8933

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2