hkivancoral's picture
End of training
e577a65
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.86

smids_3x_deit_small_adamax_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4399
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3979 1.0 225 0.5683 0.7933
0.2606 2.0 450 0.4043 0.84
0.2162 3.0 675 0.5101 0.82
0.2443 4.0 900 0.4744 0.84
0.1743 5.0 1125 0.4964 0.8567
0.1364 6.0 1350 0.5063 0.8433
0.1949 7.0 1575 0.5298 0.855
0.116 8.0 1800 0.6753 0.8617
0.1838 9.0 2025 0.6150 0.84
0.0967 10.0 2250 0.7712 0.8433
0.0509 11.0 2475 0.7887 0.8417
0.0235 12.0 2700 0.6823 0.8633
0.0623 13.0 2925 0.6980 0.8533
0.0443 14.0 3150 0.6897 0.87
0.0341 15.0 3375 0.8718 0.8417
0.037 16.0 3600 0.8120 0.865
0.0314 17.0 3825 0.8372 0.8467
0.0477 18.0 4050 0.7518 0.85
0.0002 19.0 4275 1.0178 0.8517
0.0091 20.0 4500 1.1728 0.8333
0.0291 21.0 4725 0.9139 0.85
0.0076 22.0 4950 1.0132 0.8533
0.0005 23.0 5175 1.0336 0.8567
0.0002 24.0 5400 1.1694 0.85
0.0032 25.0 5625 1.1362 0.86
0.0002 26.0 5850 1.2122 0.85
0.011 27.0 6075 1.2712 0.8567
0.0237 28.0 6300 1.3743 0.85
0.0 29.0 6525 1.2063 0.86
0.0 30.0 6750 1.3085 0.86
0.0 31.0 6975 1.3297 0.8567
0.0 32.0 7200 1.2473 0.855
0.0 33.0 7425 1.1982 0.8617
0.0 34.0 7650 1.2288 0.8617
0.0 35.0 7875 1.2397 0.8617
0.0 36.0 8100 1.2697 0.8617
0.0 37.0 8325 1.2895 0.8583
0.0 38.0 8550 1.3064 0.8583
0.0 39.0 8775 1.3040 0.8583
0.0 40.0 9000 1.3224 0.8617
0.0 41.0 9225 1.3481 0.8567
0.0032 42.0 9450 1.3550 0.8583
0.0 43.0 9675 1.3631 0.86
0.0029 44.0 9900 1.3898 0.8567
0.0 45.0 10125 1.3948 0.86
0.0 46.0 10350 1.4079 0.86
0.0 47.0 10575 1.4219 0.86
0.0 48.0 10800 1.4319 0.8583
0.0 49.0 11025 1.4436 0.8583
0.0 50.0 11250 1.4399 0.86

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2