hkivancoral's picture
End of training
4b4efe2
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8866666666666667

smids_3x_deit_small_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9259
  • Accuracy: 0.8867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5128 1.0 225 0.3960 0.845
0.2912 2.0 450 0.3545 0.855
0.2355 3.0 675 0.5138 0.8283
0.2322 4.0 900 0.3502 0.8567
0.1566 5.0 1125 0.4327 0.855
0.1654 6.0 1350 0.3396 0.8883
0.1711 7.0 1575 0.4306 0.8733
0.1936 8.0 1800 0.4649 0.8783
0.1252 9.0 2025 0.4662 0.875
0.0897 10.0 2250 0.4869 0.8767
0.0556 11.0 2475 0.4677 0.8883
0.117 12.0 2700 0.5865 0.8667
0.1159 13.0 2925 0.6366 0.87
0.0526 14.0 3150 0.5638 0.8917
0.0199 15.0 3375 0.6092 0.885
0.0105 16.0 3600 0.7275 0.8817
0.0173 17.0 3825 0.6827 0.8883
0.0471 18.0 4050 0.6845 0.87
0.0272 19.0 4275 0.6814 0.8933
0.0245 20.0 4500 0.7971 0.8767
0.0042 21.0 4725 0.7308 0.8867
0.0003 22.0 4950 0.8304 0.895
0.0001 23.0 5175 0.8296 0.8917
0.0235 24.0 5400 0.7781 0.88
0.0005 25.0 5625 0.8114 0.8833
0.0112 26.0 5850 0.8185 0.8833
0.0 27.0 6075 0.9165 0.8833
0.0034 28.0 6300 0.9111 0.8783
0.0037 29.0 6525 0.8969 0.8833
0.0001 30.0 6750 0.9635 0.8783
0.0 31.0 6975 0.8389 0.8933
0.0 32.0 7200 0.9477 0.8767
0.003 33.0 7425 0.8612 0.8917
0.0001 34.0 7650 0.8689 0.8983
0.0025 35.0 7875 0.8114 0.885
0.0 36.0 8100 0.8426 0.8867
0.0037 37.0 8325 0.8625 0.8833
0.0006 38.0 8550 0.8725 0.885
0.0 39.0 8775 0.8789 0.8833
0.0 40.0 9000 0.8405 0.885
0.0 41.0 9225 0.8737 0.8833
0.0 42.0 9450 0.9022 0.8867
0.003 43.0 9675 0.9115 0.8833
0.0 44.0 9900 0.9099 0.8867
0.0 45.0 10125 0.9104 0.8883
0.0 46.0 10350 0.9175 0.8867
0.0 47.0 10575 0.9200 0.8867
0.0 48.0 10800 0.9224 0.8867
0.0 49.0 11025 0.9241 0.8867
0.0 50.0 11250 0.9259 0.8867

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2