hkivancoral's picture
End of training
b09e0af
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8685524126455907

smids_3x_deit_small_rms_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2809
  • Accuracy: 0.8686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2767 1.0 225 0.3185 0.8686
0.1511 2.0 450 0.3126 0.8669
0.096 3.0 675 0.3591 0.8735
0.0576 4.0 900 0.4235 0.8735
0.0262 5.0 1125 0.4922 0.8819
0.0164 6.0 1350 0.6380 0.8719
0.0169 7.0 1575 0.7607 0.8569
0.0085 8.0 1800 0.8747 0.8602
0.0061 9.0 2025 0.9757 0.8586
0.002 10.0 2250 1.0480 0.8586
0.0017 11.0 2475 0.9765 0.8702
0.0016 12.0 2700 0.9383 0.8719
0.0018 13.0 2925 0.9688 0.8719
0.0 14.0 3150 0.9770 0.8602
0.0002 15.0 3375 0.9981 0.8686
0.0 16.0 3600 0.9902 0.8735
0.0075 17.0 3825 1.0861 0.8586
0.0092 18.0 4050 1.0830 0.8552
0.0002 19.0 4275 0.9892 0.8719
0.0029 20.0 4500 1.1768 0.8619
0.0 21.0 4725 1.1820 0.8619
0.031 22.0 4950 1.0285 0.8619
0.0053 23.0 5175 1.0925 0.8569
0.0 24.0 5400 1.1089 0.8652
0.0412 25.0 5625 1.2047 0.8502
0.0 26.0 5850 1.1861 0.8569
0.0 27.0 6075 1.2680 0.8569
0.0001 28.0 6300 1.1737 0.8652
0.0173 29.0 6525 1.2944 0.8486
0.0044 30.0 6750 1.1884 0.8636
0.0 31.0 6975 1.2534 0.8652
0.0 32.0 7200 1.2427 0.8636
0.0 33.0 7425 1.2253 0.8719
0.0 34.0 7650 1.2543 0.8652
0.0 35.0 7875 1.2431 0.8702
0.004 36.0 8100 1.2651 0.8619
0.0 37.0 8325 1.2443 0.8652
0.0 38.0 8550 1.2852 0.8669
0.004 39.0 8775 1.2690 0.8686
0.0 40.0 9000 1.2725 0.8686
0.0 41.0 9225 1.2668 0.8719
0.0 42.0 9450 1.2758 0.8686
0.0 43.0 9675 1.2725 0.8669
0.0 44.0 9900 1.2814 0.8669
0.0 45.0 10125 1.2808 0.8686
0.0 46.0 10350 1.2792 0.8702
0.0 47.0 10575 1.2803 0.8686
0.0 48.0 10800 1.2804 0.8686
0.0022 49.0 11025 1.2805 0.8686
0.0022 50.0 11250 1.2809 0.8686

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2