hkivancoral's picture
End of training
d63e537
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_rms_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8966666666666666

smids_3x_deit_small_rms_00001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9862
  • Accuracy: 0.8967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2966 1.0 225 0.2690 0.9033
0.1769 2.0 450 0.2748 0.8983
0.056 3.0 675 0.2735 0.9083
0.044 4.0 900 0.3836 0.8983
0.0464 5.0 1125 0.4418 0.9033
0.0264 6.0 1350 0.5404 0.9
0.0095 7.0 1575 0.6147 0.9033
0.0323 8.0 1800 0.7069 0.895
0.0188 9.0 2025 0.6561 0.8917
0.0451 10.0 2250 0.7550 0.8883
0.0417 11.0 2475 0.7782 0.885
0.0052 12.0 2700 0.7305 0.8983
0.0 13.0 2925 0.7512 0.895
0.0288 14.0 3150 0.7604 0.905
0.0005 15.0 3375 0.9139 0.8833
0.0005 16.0 3600 0.8987 0.895
0.0052 17.0 3825 0.8858 0.8867
0.0001 18.0 4050 0.8522 0.9067
0.0 19.0 4275 0.8054 0.8983
0.0188 20.0 4500 0.9106 0.8833
0.0011 21.0 4725 0.9098 0.9
0.0058 22.0 4950 0.8872 0.895
0.0 23.0 5175 0.8360 0.9017
0.0049 24.0 5400 0.8800 0.9017
0.0051 25.0 5625 0.8690 0.8967
0.0025 26.0 5850 0.8437 0.9067
0.0 27.0 6075 0.8956 0.8983
0.0186 28.0 6300 0.8603 0.895
0.0039 29.0 6525 0.8775 0.9
0.0038 30.0 6750 0.8713 0.91
0.0039 31.0 6975 0.8607 0.9033
0.0 32.0 7200 0.9394 0.895
0.0 33.0 7425 0.9694 0.8917
0.0 34.0 7650 0.9863 0.8917
0.0 35.0 7875 0.9386 0.8983
0.0 36.0 8100 0.9806 0.8867
0.0 37.0 8325 0.9851 0.89
0.0 38.0 8550 0.9929 0.89
0.0 39.0 8775 0.9484 0.9067
0.0 40.0 9000 0.9905 0.8933
0.0 41.0 9225 0.9966 0.8917
0.0 42.0 9450 0.9879 0.8933
0.0 43.0 9675 0.9809 0.8967
0.0 44.0 9900 0.9763 0.9017
0.0 45.0 10125 0.9905 0.8967
0.0 46.0 10350 0.9941 0.8967
0.0024 47.0 10575 0.9905 0.8967
0.0 48.0 10800 0.9890 0.8967
0.0 49.0 11025 0.9879 0.8967
0.0 50.0 11250 0.9862 0.8967

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2