hkivancoral's picture
End of training
87dd802
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_rms_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8783333333333333

smids_3x_deit_small_rms_00001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2799
  • Accuracy: 0.8783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2819 1.0 225 0.3374 0.875
0.0966 2.0 450 0.3633 0.8733
0.0536 3.0 675 0.4166 0.8633
0.0743 4.0 900 0.4615 0.88
0.0231 5.0 1125 0.6512 0.865
0.0353 6.0 1350 0.6888 0.8783
0.0422 7.0 1575 0.8522 0.8717
0.0395 8.0 1800 0.9258 0.865
0.0246 9.0 2025 0.8665 0.8717
0.0065 10.0 2250 0.9925 0.8683
0.0002 11.0 2475 0.9127 0.875
0.0053 12.0 2700 0.9170 0.88
0.0078 13.0 2925 1.0774 0.8683
0.0094 14.0 3150 1.0384 0.8717
0.0815 15.0 3375 0.9472 0.8767
0.0 16.0 3600 1.0185 0.87
0.0 17.0 3825 1.1297 0.8733
0.0 18.0 4050 1.0917 0.865
0.0 19.0 4275 1.2078 0.865
0.0 20.0 4500 1.1817 0.8717
0.0328 21.0 4725 1.2494 0.8667
0.0221 22.0 4950 1.1544 0.87
0.0 23.0 5175 1.1616 0.87
0.0 24.0 5400 1.0994 0.875
0.0001 25.0 5625 1.1448 0.8767
0.0 26.0 5850 1.1095 0.88
0.0 27.0 6075 1.1096 0.88
0.0 28.0 6300 1.1094 0.8783
0.0 29.0 6525 1.1571 0.875
0.0 30.0 6750 1.1384 0.8833
0.0 31.0 6975 1.1678 0.875
0.0 32.0 7200 1.1864 0.8733
0.0006 33.0 7425 1.1549 0.8817
0.0 34.0 7650 1.1715 0.8833
0.0 35.0 7875 1.2200 0.8817
0.0 36.0 8100 1.1957 0.8817
0.0 37.0 8325 1.1943 0.8833
0.0 38.0 8550 1.1984 0.88
0.0 39.0 8775 1.2416 0.8817
0.0 40.0 9000 1.2319 0.8783
0.0 41.0 9225 1.2497 0.8783
0.0028 42.0 9450 1.2526 0.8783
0.0 43.0 9675 1.2621 0.8767
0.0026 44.0 9900 1.2618 0.875
0.0 45.0 10125 1.2702 0.8767
0.0 46.0 10350 1.2698 0.88
0.0 47.0 10575 1.2756 0.88
0.0 48.0 10800 1.2780 0.8783
0.0 49.0 11025 1.2789 0.8783
0.0 50.0 11250 1.2799 0.8783

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2