hkivancoral's picture
End of training
e12c74e
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_rms_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8933333333333333

smids_3x_deit_small_rms_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9898
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2981 1.0 225 0.3128 0.8667
0.1441 2.0 450 0.2643 0.895
0.112 3.0 675 0.3212 0.8817
0.0406 4.0 900 0.3851 0.8983
0.0366 5.0 1125 0.4872 0.8767
0.0159 6.0 1350 0.5831 0.8817
0.0669 7.0 1575 0.5966 0.8833
0.0217 8.0 1800 0.7066 0.89
0.0482 9.0 2025 0.7260 0.8917
0.003 10.0 2250 0.6702 0.9017
0.0029 11.0 2475 0.6212 0.9133
0.0459 12.0 2700 0.7442 0.8967
0.0005 13.0 2925 0.7171 0.9
0.0 14.0 3150 0.7165 0.905
0.0001 15.0 3375 0.7191 0.9017
0.0236 16.0 3600 0.6965 0.8967
0.0 17.0 3825 0.7247 0.9
0.0002 18.0 4050 0.8019 0.89
0.0206 19.0 4275 0.7794 0.9
0.0023 20.0 4500 0.7187 0.9017
0.0 21.0 4725 0.8080 0.9017
0.0033 22.0 4950 0.9120 0.885
0.0 23.0 5175 0.9403 0.88
0.0076 24.0 5400 0.8853 0.8917
0.0 25.0 5625 0.8438 0.8983
0.0 26.0 5850 0.8326 0.8983
0.0 27.0 6075 0.9235 0.8867
0.0023 28.0 6300 0.8353 0.9
0.0039 29.0 6525 0.9907 0.8883
0.0 30.0 6750 0.9749 0.885
0.0 31.0 6975 0.9599 0.8917
0.0 32.0 7200 0.9273 0.8883
0.0038 33.0 7425 0.9025 0.9
0.0 34.0 7650 0.9166 0.9
0.0036 35.0 7875 0.9319 0.9017
0.0 36.0 8100 0.9400 0.89
0.0042 37.0 8325 0.9533 0.895
0.0 38.0 8550 0.9627 0.8883
0.0 39.0 8775 0.9661 0.8967
0.0 40.0 9000 0.9682 0.89
0.0 41.0 9225 0.9782 0.89
0.0 42.0 9450 0.9830 0.89
0.0028 43.0 9675 0.9854 0.8917
0.0 44.0 9900 0.9812 0.8917
0.0 45.0 10125 0.9848 0.8917
0.0 46.0 10350 0.9870 0.895
0.0 47.0 10575 0.9891 0.8917
0.0 48.0 10800 0.9895 0.8933
0.0 49.0 11025 0.9898 0.8933
0.0 50.0 11250 0.9898 0.8933

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2