metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_small_rms_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.715
smids_3x_deit_small_rms_001_fold3
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6470
- Accuracy: 0.715
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1298 | 1.0 | 225 | 1.0984 | 0.34 |
1.1021 | 2.0 | 450 | 1.0452 | 0.4267 |
0.8891 | 3.0 | 675 | 0.8675 | 0.52 |
0.8324 | 4.0 | 900 | 0.9012 | 0.57 |
0.8729 | 5.0 | 1125 | 0.9895 | 0.4433 |
0.8594 | 6.0 | 1350 | 0.8010 | 0.605 |
1.2058 | 7.0 | 1575 | 0.8492 | 0.5583 |
0.8886 | 8.0 | 1800 | 0.8315 | 0.6067 |
0.825 | 9.0 | 2025 | 0.7910 | 0.6167 |
0.82 | 10.0 | 2250 | 0.8740 | 0.545 |
0.8151 | 11.0 | 2475 | 0.8350 | 0.54 |
0.8595 | 12.0 | 2700 | 0.8022 | 0.5917 |
0.7431 | 13.0 | 2925 | 0.7832 | 0.6233 |
0.7711 | 14.0 | 3150 | 0.8235 | 0.6017 |
0.743 | 15.0 | 3375 | 0.7910 | 0.6083 |
0.7919 | 16.0 | 3600 | 0.7423 | 0.645 |
0.7646 | 17.0 | 3825 | 0.7716 | 0.645 |
0.7563 | 18.0 | 4050 | 0.7602 | 0.6017 |
0.7776 | 19.0 | 4275 | 0.7391 | 0.6517 |
0.679 | 20.0 | 4500 | 0.9075 | 0.585 |
0.7215 | 21.0 | 4725 | 0.8407 | 0.5817 |
0.697 | 22.0 | 4950 | 0.7647 | 0.6367 |
0.6799 | 23.0 | 5175 | 0.7300 | 0.65 |
0.6618 | 24.0 | 5400 | 0.7249 | 0.6533 |
0.7275 | 25.0 | 5625 | 0.6970 | 0.6783 |
0.6922 | 26.0 | 5850 | 0.7048 | 0.66 |
0.6032 | 27.0 | 6075 | 0.7956 | 0.6433 |
0.6867 | 28.0 | 6300 | 0.7208 | 0.6633 |
0.7286 | 29.0 | 6525 | 0.7360 | 0.6533 |
0.5865 | 30.0 | 6750 | 0.7249 | 0.6833 |
0.6196 | 31.0 | 6975 | 0.7133 | 0.6933 |
0.6323 | 32.0 | 7200 | 0.7099 | 0.6617 |
0.6683 | 33.0 | 7425 | 0.6777 | 0.6967 |
0.6008 | 34.0 | 7650 | 0.7425 | 0.6517 |
0.6135 | 35.0 | 7875 | 0.6674 | 0.6967 |
0.6008 | 36.0 | 8100 | 0.6639 | 0.7033 |
0.6752 | 37.0 | 8325 | 0.6658 | 0.6867 |
0.5964 | 38.0 | 8550 | 0.6380 | 0.7067 |
0.57 | 39.0 | 8775 | 0.6573 | 0.7033 |
0.5546 | 40.0 | 9000 | 0.6537 | 0.71 |
0.556 | 41.0 | 9225 | 0.6444 | 0.72 |
0.5972 | 42.0 | 9450 | 0.6277 | 0.7217 |
0.4929 | 43.0 | 9675 | 0.6416 | 0.7217 |
0.5311 | 44.0 | 9900 | 0.6558 | 0.72 |
0.5177 | 45.0 | 10125 | 0.6499 | 0.7183 |
0.5402 | 46.0 | 10350 | 0.6436 | 0.7283 |
0.5836 | 47.0 | 10575 | 0.6389 | 0.7133 |
0.531 | 48.0 | 10800 | 0.6442 | 0.7133 |
0.5194 | 49.0 | 11025 | 0.6460 | 0.7117 |
0.5631 | 50.0 | 11250 | 0.6470 | 0.715 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2