hkivancoral's picture
End of training
7a86056
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_rms_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7033333333333334

smids_3x_deit_small_rms_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6403
  • Accuracy: 0.7033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1309 1.0 225 1.0865 0.4083
0.9745 2.0 450 0.8750 0.56
0.8495 3.0 675 0.8352 0.5333
0.841 4.0 900 0.7966 0.555
0.8226 5.0 1125 0.7921 0.6
0.853 6.0 1350 0.8095 0.5533
0.8653 7.0 1575 0.9709 0.5433
0.819 8.0 1800 0.7655 0.6383
0.785 9.0 2025 0.7896 0.625
0.8631 10.0 2250 0.8879 0.525
0.8663 11.0 2475 0.8802 0.535
0.7946 12.0 2700 0.8056 0.6
0.881 13.0 2925 0.8010 0.5733
0.8182 14.0 3150 0.7603 0.6483
0.7224 15.0 3375 0.7710 0.645
0.7369 16.0 3600 0.7559 0.615
0.7647 17.0 3825 0.7835 0.5983
0.7746 18.0 4050 0.7447 0.645
0.7626 19.0 4275 0.7290 0.66
0.7327 20.0 4500 0.7697 0.6333
0.7163 21.0 4725 0.7314 0.6433
0.8028 22.0 4950 0.7791 0.6
0.7667 23.0 5175 0.7694 0.64
0.7558 24.0 5400 0.7110 0.6567
0.7363 25.0 5625 0.7150 0.655
0.7997 26.0 5850 0.7280 0.6617
0.7362 27.0 6075 0.7643 0.625
0.7462 28.0 6300 0.7414 0.6233
0.7001 29.0 6525 0.6980 0.665
0.6874 30.0 6750 0.7253 0.6283
0.6271 31.0 6975 0.7291 0.6433
0.6551 32.0 7200 0.6785 0.6567
0.7073 33.0 7425 0.6937 0.6717
0.6958 34.0 7650 0.7523 0.6367
0.6565 35.0 7875 0.6954 0.6533
0.6367 36.0 8100 0.6638 0.6817
0.6915 37.0 8325 0.6412 0.7083
0.5928 38.0 8550 0.7119 0.6533
0.6501 39.0 8775 0.6232 0.7133
0.5902 40.0 9000 0.6501 0.71
0.6466 41.0 9225 0.6743 0.6683
0.7124 42.0 9450 0.7091 0.6783
0.6189 43.0 9675 0.6361 0.71
0.6514 44.0 9900 0.6443 0.7
0.6016 45.0 10125 0.6523 0.6883
0.5823 46.0 10350 0.6473 0.685
0.6451 47.0 10575 0.6348 0.69
0.5906 48.0 10800 0.6387 0.695
0.5662 49.0 11025 0.6330 0.7017
0.6218 50.0 11250 0.6403 0.7033

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2