hkivancoral's picture
End of training
caa89d8
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_sgd_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.49248747913188645

smids_3x_deit_small_sgd_00001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0200
  • Accuracy: 0.4925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0919 1.0 226 1.0743 0.4407
1.0742 2.0 452 1.0717 0.4391
1.0524 3.0 678 1.0693 0.4357
1.0603 4.0 904 1.0670 0.4391
1.0627 5.0 1130 1.0647 0.4391
1.0778 6.0 1356 1.0625 0.4457
1.0591 7.0 1582 1.0603 0.4441
1.0519 8.0 1808 1.0582 0.4457
1.0538 9.0 2034 1.0562 0.4474
1.0527 10.0 2260 1.0542 0.4491
1.057 11.0 2486 1.0523 0.4491
1.0703 12.0 2712 1.0505 0.4491
1.0101 13.0 2938 1.0488 0.4474
1.0585 14.0 3164 1.0471 0.4491
1.0541 15.0 3390 1.0455 0.4541
1.0416 16.0 3616 1.0438 0.4591
1.03 17.0 3842 1.0423 0.4608
1.0278 18.0 4068 1.0408 0.4624
1.0509 19.0 4294 1.0394 0.4641
1.0188 20.0 4520 1.0381 0.4674
1.0344 21.0 4746 1.0367 0.4674
1.0343 22.0 4972 1.0355 0.4691
1.0324 23.0 5198 1.0343 0.4691
1.0367 24.0 5424 1.0331 0.4725
0.9995 25.0 5650 1.0320 0.4725
1.0409 26.0 5876 1.0310 0.4725
1.0145 27.0 6102 1.0300 0.4758
1.0333 28.0 6328 1.0290 0.4758
1.0283 29.0 6554 1.0281 0.4791
1.0286 30.0 6780 1.0273 0.4808
1.0197 31.0 7006 1.0265 0.4808
1.0259 32.0 7232 1.0257 0.4791
1.0188 33.0 7458 1.0250 0.4808
1.0201 34.0 7684 1.0244 0.4808
1.0339 35.0 7910 1.0238 0.4825
1.0181 36.0 8136 1.0232 0.4875
1.0181 37.0 8362 1.0227 0.4875
1.0115 38.0 8588 1.0223 0.4875
0.9878 39.0 8814 1.0218 0.4891
1.0096 40.0 9040 1.0215 0.4891
1.024 41.0 9266 1.0212 0.4891
1.0376 42.0 9492 1.0209 0.4908
1.0233 43.0 9718 1.0206 0.4925
1.0195 44.0 9944 1.0204 0.4925
1.0135 45.0 10170 1.0203 0.4925
1.039 46.0 10396 1.0202 0.4925
1.0136 47.0 10622 1.0201 0.4925
1.0247 48.0 10848 1.0200 0.4925
1.0178 49.0 11074 1.0200 0.4925
1.0351 50.0 11300 1.0200 0.4925

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2