hkivancoral's picture
End of training
bb6835b
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_sgd_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4875207986688852

smids_3x_deit_small_sgd_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0145
  • Accuracy: 0.4875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0768 1.0 225 1.0706 0.4276
1.0941 2.0 450 1.0680 0.4293
1.0918 3.0 675 1.0655 0.4309
1.0511 4.0 900 1.0630 0.4376
1.0876 5.0 1125 1.0606 0.4393
1.0339 6.0 1350 1.0583 0.4393
1.0616 7.0 1575 1.0561 0.4459
1.0897 8.0 1800 1.0540 0.4459
1.053 9.0 2025 1.0518 0.4493
1.0515 10.0 2250 1.0498 0.4509
1.0879 11.0 2475 1.0479 0.4542
1.0316 12.0 2700 1.0459 0.4542
1.0424 13.0 2925 1.0441 0.4576
1.0786 14.0 3150 1.0424 0.4609
1.061 15.0 3375 1.0407 0.4626
1.064 16.0 3600 1.0390 0.4642
1.0184 17.0 3825 1.0374 0.4626
1.0313 18.0 4050 1.0359 0.4626
1.0429 19.0 4275 1.0344 0.4642
1.0308 20.0 4500 1.0330 0.4642
1.049 21.0 4725 1.0317 0.4659
1.0164 22.0 4950 1.0304 0.4642
1.0457 23.0 5175 1.0292 0.4642
1.0471 24.0 5400 1.0280 0.4626
1.0294 25.0 5625 1.0269 0.4642
1.0309 26.0 5850 1.0258 0.4659
1.0318 27.0 6075 1.0248 0.4659
1.0436 28.0 6300 1.0238 0.4676
1.0288 29.0 6525 1.0229 0.4725
1.0425 30.0 6750 1.0220 0.4742
1.0267 31.0 6975 1.0212 0.4792
1.0174 32.0 7200 1.0204 0.4809
1.0197 33.0 7425 1.0197 0.4809
1.0313 34.0 7650 1.0190 0.4809
1.0296 35.0 7875 1.0184 0.4809
1.0429 36.0 8100 1.0179 0.4842
1.0312 37.0 8325 1.0173 0.4859
1.0214 38.0 8550 1.0169 0.4842
1.0321 39.0 8775 1.0164 0.4859
1.0329 40.0 9000 1.0161 0.4859
1.0094 41.0 9225 1.0157 0.4875
0.9973 42.0 9450 1.0154 0.4875
1.0326 43.0 9675 1.0152 0.4875
1.0086 44.0 9900 1.0150 0.4875
1.0104 45.0 10125 1.0148 0.4875
1.0211 46.0 10350 1.0147 0.4875
0.9952 47.0 10575 1.0146 0.4875
0.9977 48.0 10800 1.0146 0.4875
1.0187 49.0 11025 1.0146 0.4875
1.0188 50.0 11250 1.0145 0.4875

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2