hkivancoral's picture
End of training
d9288b2
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_sgd_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.46166666666666667

smids_3x_deit_small_sgd_00001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0287
  • Accuracy: 0.4617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0656 1.0 225 1.0860 0.385
1.0566 2.0 450 1.0832 0.385
1.0608 3.0 675 1.0806 0.385
1.0487 4.0 900 1.0780 0.3883
1.0631 5.0 1125 1.0755 0.39
1.0618 6.0 1350 1.0731 0.395
1.0528 7.0 1575 1.0708 0.3967
1.0523 8.0 1800 1.0686 0.3967
1.0663 9.0 2025 1.0664 0.3983
1.0433 10.0 2250 1.0643 0.405
1.0514 11.0 2475 1.0623 0.4067
1.0454 12.0 2700 1.0603 0.4083
1.0616 13.0 2925 1.0585 0.41
1.031 14.0 3150 1.0567 0.415
1.0471 15.0 3375 1.0550 0.42
1.0587 16.0 3600 1.0533 0.42
1.0376 17.0 3825 1.0517 0.4233
1.0297 18.0 4050 1.0502 0.4267
1.0331 19.0 4275 1.0487 0.435
1.0488 20.0 4500 1.0473 0.4367
1.0355 21.0 4725 1.0459 0.4367
1.0375 22.0 4950 1.0446 0.4367
1.0233 23.0 5175 1.0434 0.4367
1.0207 24.0 5400 1.0422 0.44
1.0243 25.0 5625 1.0410 0.445
1.0105 26.0 5850 1.0400 0.4467
1.019 27.0 6075 1.0389 0.4467
1.0208 28.0 6300 1.0379 0.4467
1.0103 29.0 6525 1.0370 0.4483
1.0126 30.0 6750 1.0362 0.4517
1.0069 31.0 6975 1.0354 0.4533
1.0415 32.0 7200 1.0346 0.455
1.0107 33.0 7425 1.0339 0.4567
1.013 34.0 7650 1.0332 0.4583
0.9989 35.0 7875 1.0326 0.4583
0.9864 36.0 8100 1.0320 0.4583
1.0065 37.0 8325 1.0315 0.4583
1.0147 38.0 8550 1.0310 0.46
1.0279 39.0 8775 1.0306 0.4583
1.0198 40.0 9000 1.0302 0.4583
1.0298 41.0 9225 1.0299 0.4583
1.0219 42.0 9450 1.0296 0.4583
1.0277 43.0 9675 1.0293 0.4583
1.0097 44.0 9900 1.0291 0.4583
1.0316 45.0 10125 1.0290 0.4583
1.0133 46.0 10350 1.0288 0.46
0.9895 47.0 10575 1.0288 0.4617
1.0235 48.0 10800 1.0287 0.4617
1.0129 49.0 11025 1.0287 0.4617
0.9906 50.0 11250 1.0287 0.4617

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2