hkivancoral's picture
End of training
a06456d
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_sgd_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.505

smids_3x_deit_small_sgd_00001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0105
  • Accuracy: 0.505

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0492 1.0 225 1.0666 0.43
1.0754 2.0 450 1.0640 0.43
1.0504 3.0 675 1.0616 0.4283
1.071 4.0 900 1.0591 0.43
1.052 5.0 1125 1.0568 0.4333
1.0616 6.0 1350 1.0545 0.44
1.0716 7.0 1575 1.0524 0.4433
1.0533 8.0 1800 1.0502 0.4417
1.0683 9.0 2025 1.0482 0.44
1.0375 10.0 2250 1.0461 0.4417
1.0594 11.0 2475 1.0442 0.445
1.0638 12.0 2700 1.0423 0.4467
1.0743 13.0 2925 1.0405 0.45
1.0117 14.0 3150 1.0387 0.4517
1.0604 15.0 3375 1.0370 0.4517
1.0498 16.0 3600 1.0354 0.4567
1.0315 17.0 3825 1.0338 0.46
1.0306 18.0 4050 1.0323 0.465
1.0262 19.0 4275 1.0309 0.4667
1.0262 20.0 4500 1.0294 0.4667
1.0341 21.0 4725 1.0281 0.4683
1.0464 22.0 4950 1.0268 0.4717
1.0098 23.0 5175 1.0255 0.4733
1.029 24.0 5400 1.0243 0.475
1.0091 25.0 5625 1.0231 0.4817
1.017 26.0 5850 1.0221 0.4833
1.0365 27.0 6075 1.0210 0.4883
1.019 28.0 6300 1.0200 0.4883
1.0442 29.0 6525 1.0191 0.4883
1.0415 30.0 6750 1.0182 0.4867
1.0316 31.0 6975 1.0174 0.4883
1.045 32.0 7200 1.0166 0.4883
1.0078 33.0 7425 1.0159 0.49
1.023 34.0 7650 1.0152 0.49
1.0174 35.0 7875 1.0146 0.495
1.0095 36.0 8100 1.0140 0.5
1.0162 37.0 8325 1.0135 0.5
1.0427 38.0 8550 1.0130 0.5
1.0155 39.0 8775 1.0125 0.5033
1.0159 40.0 9000 1.0122 0.505
1.0255 41.0 9225 1.0118 0.505
1.023 42.0 9450 1.0115 0.5067
1.0068 43.0 9675 1.0113 0.505
1.0321 44.0 9900 1.0110 0.505
1.0329 45.0 10125 1.0109 0.505
1.0275 46.0 10350 1.0107 0.505
1.0181 47.0 10575 1.0106 0.505
1.0137 48.0 10800 1.0106 0.505
1.0177 49.0 11025 1.0105 0.505
1.0148 50.0 11250 1.0105 0.505

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2