metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_small_sgd_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7820299500831946
smids_3x_deit_small_sgd_0001_fold2
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5927
- Accuracy: 0.7820
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0529 | 1.0 | 225 | 1.0464 | 0.4542 |
1.0393 | 2.0 | 450 | 1.0215 | 0.4759 |
1.0194 | 3.0 | 675 | 0.9971 | 0.5158 |
0.9608 | 4.0 | 900 | 0.9729 | 0.5541 |
0.9743 | 5.0 | 1125 | 0.9487 | 0.6023 |
0.9002 | 6.0 | 1350 | 0.9258 | 0.6206 |
0.8961 | 7.0 | 1575 | 0.9030 | 0.6373 |
0.9282 | 8.0 | 1800 | 0.8813 | 0.6539 |
0.856 | 9.0 | 2025 | 0.8605 | 0.6705 |
0.8441 | 10.0 | 2250 | 0.8407 | 0.6772 |
0.8723 | 11.0 | 2475 | 0.8225 | 0.6839 |
0.7789 | 12.0 | 2700 | 0.8048 | 0.6955 |
0.7952 | 13.0 | 2925 | 0.7885 | 0.7055 |
0.7937 | 14.0 | 3150 | 0.7729 | 0.7155 |
0.8007 | 15.0 | 3375 | 0.7585 | 0.7255 |
0.769 | 16.0 | 3600 | 0.7449 | 0.7238 |
0.7262 | 17.0 | 3825 | 0.7325 | 0.7255 |
0.7259 | 18.0 | 4050 | 0.7208 | 0.7238 |
0.7176 | 19.0 | 4275 | 0.7099 | 0.7255 |
0.6791 | 20.0 | 4500 | 0.6998 | 0.7271 |
0.7106 | 21.0 | 4725 | 0.6905 | 0.7338 |
0.6951 | 22.0 | 4950 | 0.6819 | 0.7371 |
0.7193 | 23.0 | 5175 | 0.6739 | 0.7471 |
0.6759 | 24.0 | 5400 | 0.6663 | 0.7521 |
0.6975 | 25.0 | 5625 | 0.6593 | 0.7537 |
0.6391 | 26.0 | 5850 | 0.6529 | 0.7571 |
0.6617 | 27.0 | 6075 | 0.6469 | 0.7604 |
0.6434 | 28.0 | 6300 | 0.6413 | 0.7604 |
0.6619 | 29.0 | 6525 | 0.6362 | 0.7587 |
0.6444 | 30.0 | 6750 | 0.6315 | 0.7571 |
0.6161 | 31.0 | 6975 | 0.6270 | 0.7604 |
0.6193 | 32.0 | 7200 | 0.6230 | 0.7671 |
0.5926 | 33.0 | 7425 | 0.6193 | 0.7654 |
0.5861 | 34.0 | 7650 | 0.6159 | 0.7754 |
0.6256 | 35.0 | 7875 | 0.6127 | 0.7770 |
0.6099 | 36.0 | 8100 | 0.6099 | 0.7754 |
0.5932 | 37.0 | 8325 | 0.6073 | 0.7770 |
0.5988 | 38.0 | 8550 | 0.6049 | 0.7804 |
0.574 | 39.0 | 8775 | 0.6028 | 0.7787 |
0.5835 | 40.0 | 9000 | 0.6009 | 0.7787 |
0.5292 | 41.0 | 9225 | 0.5992 | 0.7787 |
0.586 | 42.0 | 9450 | 0.5977 | 0.7804 |
0.5537 | 43.0 | 9675 | 0.5964 | 0.7820 |
0.5573 | 44.0 | 9900 | 0.5953 | 0.7837 |
0.5715 | 45.0 | 10125 | 0.5945 | 0.7820 |
0.6072 | 46.0 | 10350 | 0.5938 | 0.7820 |
0.5714 | 47.0 | 10575 | 0.5933 | 0.7837 |
0.5684 | 48.0 | 10800 | 0.5929 | 0.7820 |
0.5949 | 49.0 | 11025 | 0.5927 | 0.7820 |
0.5423 | 50.0 | 11250 | 0.5927 | 0.7820 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2