hkivancoral's picture
End of training
0d6bffe
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7716666666666666

smids_3x_deit_small_sgd_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6009
  • Accuracy: 0.7717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0412 1.0 225 1.0610 0.4117
1.0073 2.0 450 1.0359 0.4517
0.9921 3.0 675 1.0120 0.4917
0.9585 4.0 900 0.9890 0.515
0.951 5.0 1125 0.9674 0.5517
0.9167 6.0 1350 0.9465 0.5667
0.9008 7.0 1575 0.9258 0.58
0.9034 8.0 1800 0.9058 0.605
0.8748 9.0 2025 0.8869 0.6283
0.8544 10.0 2250 0.8687 0.64
0.8432 11.0 2475 0.8520 0.65
0.8244 12.0 2700 0.8358 0.66
0.8203 13.0 2925 0.8201 0.665
0.7835 14.0 3150 0.8053 0.6733
0.7537 15.0 3375 0.7910 0.68
0.7828 16.0 3600 0.7779 0.6983
0.7529 17.0 3825 0.7656 0.7067
0.7496 18.0 4050 0.7534 0.7167
0.6935 19.0 4275 0.7418 0.7283
0.7161 20.0 4500 0.7310 0.7283
0.6651 21.0 4725 0.7207 0.7283
0.7137 22.0 4950 0.7112 0.7333
0.6691 23.0 5175 0.7018 0.7367
0.6667 24.0 5400 0.6932 0.7383
0.6381 25.0 5625 0.6850 0.735
0.636 26.0 5850 0.6772 0.74
0.6231 27.0 6075 0.6700 0.7467
0.6306 28.0 6300 0.6632 0.7517
0.6547 29.0 6525 0.6569 0.7583
0.5884 30.0 6750 0.6510 0.7583
0.5952 31.0 6975 0.6455 0.7583
0.6201 32.0 7200 0.6404 0.7633
0.6515 33.0 7425 0.6357 0.765
0.6177 34.0 7650 0.6313 0.765
0.5987 35.0 7875 0.6273 0.765
0.6037 36.0 8100 0.6236 0.7633
0.571 37.0 8325 0.6202 0.765
0.5948 38.0 8550 0.6172 0.7667
0.6088 39.0 8775 0.6144 0.765
0.5862 40.0 9000 0.6119 0.77
0.5659 41.0 9225 0.6097 0.7733
0.6112 42.0 9450 0.6077 0.7733
0.5562 43.0 9675 0.6060 0.775
0.6002 44.0 9900 0.6046 0.7733
0.6408 45.0 10125 0.6034 0.7717
0.6068 46.0 10350 0.6024 0.7717
0.5514 47.0 10575 0.6017 0.7717
0.6016 48.0 10800 0.6013 0.7717
0.6117 49.0 11025 0.6010 0.7717
0.5649 50.0 11250 0.6009 0.7717

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2