metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_small_sgd_0001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7716666666666666
smids_3x_deit_small_sgd_0001_fold3
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6009
- Accuracy: 0.7717
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0412 | 1.0 | 225 | 1.0610 | 0.4117 |
1.0073 | 2.0 | 450 | 1.0359 | 0.4517 |
0.9921 | 3.0 | 675 | 1.0120 | 0.4917 |
0.9585 | 4.0 | 900 | 0.9890 | 0.515 |
0.951 | 5.0 | 1125 | 0.9674 | 0.5517 |
0.9167 | 6.0 | 1350 | 0.9465 | 0.5667 |
0.9008 | 7.0 | 1575 | 0.9258 | 0.58 |
0.9034 | 8.0 | 1800 | 0.9058 | 0.605 |
0.8748 | 9.0 | 2025 | 0.8869 | 0.6283 |
0.8544 | 10.0 | 2250 | 0.8687 | 0.64 |
0.8432 | 11.0 | 2475 | 0.8520 | 0.65 |
0.8244 | 12.0 | 2700 | 0.8358 | 0.66 |
0.8203 | 13.0 | 2925 | 0.8201 | 0.665 |
0.7835 | 14.0 | 3150 | 0.8053 | 0.6733 |
0.7537 | 15.0 | 3375 | 0.7910 | 0.68 |
0.7828 | 16.0 | 3600 | 0.7779 | 0.6983 |
0.7529 | 17.0 | 3825 | 0.7656 | 0.7067 |
0.7496 | 18.0 | 4050 | 0.7534 | 0.7167 |
0.6935 | 19.0 | 4275 | 0.7418 | 0.7283 |
0.7161 | 20.0 | 4500 | 0.7310 | 0.7283 |
0.6651 | 21.0 | 4725 | 0.7207 | 0.7283 |
0.7137 | 22.0 | 4950 | 0.7112 | 0.7333 |
0.6691 | 23.0 | 5175 | 0.7018 | 0.7367 |
0.6667 | 24.0 | 5400 | 0.6932 | 0.7383 |
0.6381 | 25.0 | 5625 | 0.6850 | 0.735 |
0.636 | 26.0 | 5850 | 0.6772 | 0.74 |
0.6231 | 27.0 | 6075 | 0.6700 | 0.7467 |
0.6306 | 28.0 | 6300 | 0.6632 | 0.7517 |
0.6547 | 29.0 | 6525 | 0.6569 | 0.7583 |
0.5884 | 30.0 | 6750 | 0.6510 | 0.7583 |
0.5952 | 31.0 | 6975 | 0.6455 | 0.7583 |
0.6201 | 32.0 | 7200 | 0.6404 | 0.7633 |
0.6515 | 33.0 | 7425 | 0.6357 | 0.765 |
0.6177 | 34.0 | 7650 | 0.6313 | 0.765 |
0.5987 | 35.0 | 7875 | 0.6273 | 0.765 |
0.6037 | 36.0 | 8100 | 0.6236 | 0.7633 |
0.571 | 37.0 | 8325 | 0.6202 | 0.765 |
0.5948 | 38.0 | 8550 | 0.6172 | 0.7667 |
0.6088 | 39.0 | 8775 | 0.6144 | 0.765 |
0.5862 | 40.0 | 9000 | 0.6119 | 0.77 |
0.5659 | 41.0 | 9225 | 0.6097 | 0.7733 |
0.6112 | 42.0 | 9450 | 0.6077 | 0.7733 |
0.5562 | 43.0 | 9675 | 0.6060 | 0.775 |
0.6002 | 44.0 | 9900 | 0.6046 | 0.7733 |
0.6408 | 45.0 | 10125 | 0.6034 | 0.7717 |
0.6068 | 46.0 | 10350 | 0.6024 | 0.7717 |
0.5514 | 47.0 | 10575 | 0.6017 | 0.7717 |
0.6016 | 48.0 | 10800 | 0.6013 | 0.7717 |
0.6117 | 49.0 | 11025 | 0.6010 | 0.7717 |
0.5649 | 50.0 | 11250 | 0.6009 | 0.7717 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2