hkivancoral's picture
End of training
fbbe2bd
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_sgd_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7783333333333333

smids_3x_deit_small_sgd_0001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5687
  • Accuracy: 0.7783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0247 1.0 225 1.0422 0.45
1.0237 2.0 450 1.0174 0.4883
0.9838 3.0 675 0.9928 0.52
0.9769 4.0 900 0.9683 0.555
0.9529 5.0 1125 0.9446 0.5867
0.9169 6.0 1350 0.9209 0.6017
0.9264 7.0 1575 0.8980 0.6083
0.9011 8.0 1800 0.8753 0.6267
0.8821 9.0 2025 0.8542 0.63
0.8381 10.0 2250 0.8337 0.66
0.8339 11.0 2475 0.8147 0.6683
0.8391 12.0 2700 0.7963 0.6833
0.8165 13.0 2925 0.7789 0.6933
0.736 14.0 3150 0.7623 0.7083
0.7819 15.0 3375 0.7468 0.725
0.7441 16.0 3600 0.7323 0.72
0.7169 17.0 3825 0.7189 0.7333
0.7451 18.0 4050 0.7062 0.7383
0.7048 19.0 4275 0.6943 0.74
0.6589 20.0 4500 0.6832 0.745
0.6884 21.0 4725 0.6730 0.7433
0.7041 22.0 4950 0.6635 0.745
0.6833 23.0 5175 0.6547 0.75
0.6669 24.0 5400 0.6465 0.7533
0.6608 25.0 5625 0.6391 0.7517
0.6311 26.0 5850 0.6322 0.7567
0.6676 27.0 6075 0.6258 0.7583
0.6172 28.0 6300 0.6199 0.7617
0.6339 29.0 6525 0.6146 0.765
0.6134 30.0 6750 0.6096 0.7717
0.6169 31.0 6975 0.6051 0.775
0.5976 32.0 7200 0.6008 0.7767
0.601 33.0 7425 0.5969 0.7767
0.6016 34.0 7650 0.5933 0.78
0.5916 35.0 7875 0.5900 0.78
0.6147 36.0 8100 0.5870 0.78
0.5896 37.0 8325 0.5843 0.78
0.5987 38.0 8550 0.5818 0.78
0.5562 39.0 8775 0.5795 0.78
0.6128 40.0 9000 0.5775 0.7817
0.5635 41.0 9225 0.5757 0.78
0.6047 42.0 9450 0.5742 0.78
0.5584 43.0 9675 0.5728 0.78
0.628 44.0 9900 0.5716 0.78
0.5798 45.0 10125 0.5707 0.7783
0.583 46.0 10350 0.5699 0.7783
0.5729 47.0 10575 0.5694 0.7783
0.5825 48.0 10800 0.5690 0.7783
0.6044 49.0 11025 0.5688 0.7783
0.5946 50.0 11250 0.5687 0.7783

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2