hkivancoral's picture
End of training
e23c04b
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.87

smids_3x_deit_small_sgd_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3235
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.834 1.0 225 0.8192 0.67
0.6262 2.0 450 0.6329 0.755
0.5137 3.0 675 0.5393 0.8
0.4726 4.0 900 0.4881 0.8117
0.4753 5.0 1125 0.4529 0.825
0.3563 6.0 1350 0.4306 0.8367
0.4027 7.0 1575 0.4125 0.8317
0.4582 8.0 1800 0.4008 0.8433
0.378 9.0 2025 0.3888 0.8417
0.3387 10.0 2250 0.3828 0.84
0.366 11.0 2475 0.3744 0.8433
0.3618 12.0 2700 0.3690 0.845
0.2883 13.0 2925 0.3626 0.845
0.2516 14.0 3150 0.3569 0.8533
0.2729 15.0 3375 0.3543 0.8517
0.2661 16.0 3600 0.3505 0.8567
0.2566 17.0 3825 0.3484 0.8567
0.2958 18.0 4050 0.3449 0.86
0.2763 19.0 4275 0.3442 0.86
0.2103 20.0 4500 0.3404 0.8633
0.2473 21.0 4725 0.3384 0.8633
0.246 22.0 4950 0.3367 0.865
0.2436 23.0 5175 0.3379 0.8617
0.2089 24.0 5400 0.3339 0.8667
0.2559 25.0 5625 0.3325 0.8667
0.2143 26.0 5850 0.3311 0.8667
0.2194 27.0 6075 0.3314 0.8667
0.2076 28.0 6300 0.3304 0.865
0.1951 29.0 6525 0.3306 0.8633
0.2173 30.0 6750 0.3289 0.87
0.2138 31.0 6975 0.3276 0.8667
0.1666 32.0 7200 0.3279 0.8683
0.2362 33.0 7425 0.3284 0.8667
0.2048 34.0 7650 0.3267 0.8683
0.1835 35.0 7875 0.3262 0.8717
0.2278 36.0 8100 0.3250 0.8683
0.2162 37.0 8325 0.3259 0.8683
0.2267 38.0 8550 0.3242 0.8717
0.2006 39.0 8775 0.3241 0.8683
0.2205 40.0 9000 0.3240 0.87
0.1797 41.0 9225 0.3251 0.8683
0.1988 42.0 9450 0.3237 0.87
0.2045 43.0 9675 0.3237 0.8717
0.2456 44.0 9900 0.3239 0.87
0.1971 45.0 10125 0.3237 0.87
0.2036 46.0 10350 0.3240 0.8683
0.1749 47.0 10575 0.3238 0.8683
0.1994 48.0 10800 0.3236 0.87
0.2429 49.0 11025 0.3236 0.87
0.2034 50.0 11250 0.3235 0.87

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2