hkivancoral's picture
End of training
aa06135
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.875

smids_3x_deit_small_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2955
  • Accuracy: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8786 1.0 225 0.8329 0.6917
0.6756 2.0 450 0.6561 0.7467
0.5645 3.0 675 0.5574 0.7867
0.4671 4.0 900 0.4924 0.8067
0.3977 5.0 1125 0.4538 0.82
0.4177 6.0 1350 0.4235 0.8367
0.3878 7.0 1575 0.4039 0.8417
0.4378 8.0 1800 0.3874 0.8433
0.3622 9.0 2025 0.3772 0.8483
0.345 10.0 2250 0.3683 0.8517
0.3638 11.0 2475 0.3631 0.8533
0.3441 12.0 2700 0.3527 0.8583
0.3313 13.0 2925 0.3447 0.865
0.2901 14.0 3150 0.3405 0.8633
0.2288 15.0 3375 0.3333 0.865
0.3024 16.0 3600 0.3306 0.865
0.2544 17.0 3825 0.3278 0.8683
0.299 18.0 4050 0.3253 0.8667
0.2662 19.0 4275 0.3235 0.8667
0.2847 20.0 4500 0.3172 0.8683
0.2132 21.0 4725 0.3164 0.8667
0.2384 22.0 4950 0.3131 0.8717
0.2264 23.0 5175 0.3102 0.8733
0.2574 24.0 5400 0.3121 0.8667
0.2327 25.0 5625 0.3088 0.8683
0.2687 26.0 5850 0.3062 0.8667
0.28 27.0 6075 0.3048 0.8667
0.2544 28.0 6300 0.3033 0.8683
0.2339 29.0 6525 0.3018 0.87
0.2 30.0 6750 0.3023 0.8733
0.1716 31.0 6975 0.3008 0.8733
0.2152 32.0 7200 0.2995 0.8717
0.2129 33.0 7425 0.2994 0.8733
0.1758 34.0 7650 0.2988 0.875
0.1848 35.0 7875 0.3009 0.875
0.2108 36.0 8100 0.2991 0.875
0.2223 37.0 8325 0.2978 0.875
0.1689 38.0 8550 0.2975 0.8733
0.1768 39.0 8775 0.2974 0.8767
0.2093 40.0 9000 0.2965 0.8733
0.1994 41.0 9225 0.2966 0.8733
0.2309 42.0 9450 0.2956 0.8733
0.2412 43.0 9675 0.2974 0.8767
0.2229 44.0 9900 0.2958 0.875
0.2153 45.0 10125 0.2965 0.8767
0.1978 46.0 10350 0.2959 0.8767
0.2092 47.0 10575 0.2956 0.875
0.2126 48.0 10800 0.2958 0.875
0.2109 49.0 11025 0.2956 0.875
0.1728 50.0 11250 0.2955 0.875

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2