hkivancoral's picture
End of training
55c0427
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8718801996672213

smids_3x_deit_tiny_adamax_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9651
  • Accuracy: 0.8719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4234 1.0 225 0.4415 0.8186
0.3257 2.0 450 0.3946 0.8353
0.2484 3.0 675 0.3209 0.8719
0.2642 4.0 900 0.3296 0.8702
0.1771 5.0 1125 0.3172 0.8702
0.173 6.0 1350 0.3544 0.8586
0.1484 7.0 1575 0.3447 0.8702
0.0971 8.0 1800 0.3412 0.8785
0.1373 9.0 2025 0.3898 0.8735
0.0316 10.0 2250 0.4151 0.8702
0.056 11.0 2475 0.4368 0.8669
0.0751 12.0 2700 0.5052 0.8752
0.0299 13.0 2925 0.5143 0.8769
0.0139 14.0 3150 0.5498 0.8802
0.0304 15.0 3375 0.6069 0.8752
0.0339 16.0 3600 0.6246 0.8785
0.0114 17.0 3825 0.6695 0.8735
0.0005 18.0 4050 0.7207 0.8702
0.0014 19.0 4275 0.7338 0.8669
0.0073 20.0 4500 0.7686 0.8669
0.0003 21.0 4725 0.8099 0.8669
0.0003 22.0 4950 0.8291 0.8686
0.002 23.0 5175 0.8321 0.8669
0.0005 24.0 5400 0.8587 0.8669
0.0136 25.0 5625 0.8652 0.8702
0.0002 26.0 5850 0.8692 0.8702
0.0001 27.0 6075 0.8870 0.8702
0.0001 28.0 6300 0.8976 0.8686
0.0057 29.0 6525 0.9057 0.8719
0.0181 30.0 6750 0.9160 0.8719
0.0001 31.0 6975 0.9098 0.8702
0.0001 32.0 7200 0.9072 0.8719
0.0001 33.0 7425 0.9201 0.8686
0.0001 34.0 7650 0.9257 0.8752
0.0 35.0 7875 0.9399 0.8702
0.0059 36.0 8100 0.9356 0.8686
0.0 37.0 8325 0.9495 0.8719
0.0 38.0 8550 0.9431 0.8702
0.0039 39.0 8775 0.9538 0.8702
0.0 40.0 9000 0.9587 0.8686
0.0 41.0 9225 0.9526 0.8702
0.0 42.0 9450 0.9618 0.8686
0.0 43.0 9675 0.9656 0.8719
0.0 44.0 9900 0.9609 0.8719
0.0001 45.0 10125 0.9585 0.8719
0.0 46.0 10350 0.9641 0.8702
0.0 47.0 10575 0.9675 0.8686
0.0 48.0 10800 0.9660 0.8719
0.0045 49.0 11025 0.9652 0.8719
0.0044 50.0 11250 0.9651 0.8719

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2