hkivancoral's picture
End of training
4d2bff5
|
raw
history blame
4.85 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9

smids_3x_deit_tiny_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7809
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4698 1.0 225 0.4392 0.8383
0.2874 2.0 450 0.3310 0.8683
0.2611 3.0 675 0.2984 0.8767
0.1948 4.0 900 0.2696 0.905
0.2186 5.0 1125 0.2803 0.905
0.1975 6.0 1350 0.2954 0.8983
0.1371 7.0 1575 0.2844 0.9033
0.1358 8.0 1800 0.2972 0.8983
0.1291 9.0 2025 0.3099 0.8967
0.0542 10.0 2250 0.3489 0.895
0.0501 11.0 2475 0.3613 0.8883
0.0606 12.0 2700 0.3786 0.8933
0.022 13.0 2925 0.4191 0.895
0.0131 14.0 3150 0.4369 0.8917
0.0269 15.0 3375 0.4976 0.89
0.017 16.0 3600 0.5139 0.8883
0.0239 17.0 3825 0.5627 0.905
0.0035 18.0 4050 0.5902 0.8933
0.0039 19.0 4275 0.6058 0.8967
0.0035 20.0 4500 0.6423 0.89
0.0003 21.0 4725 0.6358 0.8983
0.0002 22.0 4950 0.6169 0.9067
0.0002 23.0 5175 0.6520 0.8983
0.0001 24.0 5400 0.6716 0.8933
0.0214 25.0 5625 0.6822 0.8917
0.0001 26.0 5850 0.6829 0.895
0.0001 27.0 6075 0.7009 0.9017
0.0001 28.0 6300 0.7082 0.9033
0.0207 29.0 6525 0.7271 0.8967
0.0205 30.0 6750 0.7272 0.9033
0.0138 31.0 6975 0.7738 0.8867
0.0001 32.0 7200 0.7368 0.9033
0.0001 33.0 7425 0.7522 0.8967
0.0 34.0 7650 0.7497 0.8983
0.0 35.0 7875 0.7518 0.9017
0.0 36.0 8100 0.7530 0.9017
0.0 37.0 8325 0.7691 0.895
0.0 38.0 8550 0.7615 0.8983
0.0 39.0 8775 0.7639 0.9
0.0 40.0 9000 0.7671 0.9
0.0 41.0 9225 0.7823 0.8967
0.0 42.0 9450 0.7718 0.9
0.0 43.0 9675 0.7755 0.9
0.0 44.0 9900 0.7762 0.9017
0.0 45.0 10125 0.7825 0.8967
0.0 46.0 10350 0.7811 0.9
0.0044 47.0 10575 0.7795 0.9
0.0 48.0 10800 0.7809 0.9
0.0 49.0 11025 0.7812 0.9
0.0 50.0 11250 0.7809 0.9

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2