hkivancoral's picture
End of training
3b2410a
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8866666666666667

smids_3x_deit_tiny_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8922
  • Accuracy: 0.8867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4176 1.0 225 0.4035 0.8483
0.2988 2.0 450 0.3067 0.8767
0.2655 3.0 675 0.2905 0.875
0.1842 4.0 900 0.2684 0.8983
0.1435 5.0 1125 0.2769 0.8933
0.1106 6.0 1350 0.2720 0.895
0.1509 7.0 1575 0.2967 0.8917
0.1529 8.0 1800 0.3180 0.8767
0.1311 9.0 2025 0.3248 0.89
0.0801 10.0 2250 0.3813 0.885
0.0435 11.0 2475 0.4094 0.8833
0.0973 12.0 2700 0.4656 0.88
0.0775 13.0 2925 0.4789 0.8917
0.0342 14.0 3150 0.5459 0.88
0.0207 15.0 3375 0.5599 0.8833
0.0139 16.0 3600 0.5932 0.8917
0.0015 17.0 3825 0.6480 0.88
0.0008 18.0 4050 0.6641 0.88
0.0269 19.0 4275 0.6876 0.885
0.0066 20.0 4500 0.7051 0.8883
0.0002 21.0 4725 0.7338 0.8883
0.0003 22.0 4950 0.7295 0.88
0.0053 23.0 5175 0.7640 0.8833
0.0118 24.0 5400 0.8006 0.8833
0.0002 25.0 5625 0.7995 0.885
0.0002 26.0 5850 0.8061 0.8833
0.0002 27.0 6075 0.8090 0.8817
0.0003 28.0 6300 0.8501 0.875
0.0137 29.0 6525 0.8643 0.8767
0.0001 30.0 6750 0.8347 0.885
0.0001 31.0 6975 0.8412 0.8867
0.0001 32.0 7200 0.8482 0.8867
0.0139 33.0 7425 0.8560 0.8833
0.0 34.0 7650 0.8490 0.8817
0.0026 35.0 7875 0.8633 0.8867
0.0 36.0 8100 0.8671 0.8883
0.0222 37.0 8325 0.8736 0.885
0.0 38.0 8550 0.8850 0.8783
0.0 39.0 8775 0.8799 0.8833
0.0 40.0 9000 0.8936 0.88
0.0 41.0 9225 0.8899 0.8817
0.0 42.0 9450 0.8900 0.885
0.0114 43.0 9675 0.8889 0.8833
0.0 44.0 9900 0.8840 0.8867
0.0 45.0 10125 0.8851 0.8867
0.0 46.0 10350 0.8906 0.885
0.0 47.0 10575 0.8900 0.885
0.0 48.0 10800 0.8911 0.8867
0.0 49.0 11025 0.8913 0.8867
0.0 50.0 11250 0.8922 0.8867

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2