hkivancoral's picture
End of training
6688509
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8766666666666667

smids_3x_deit_tiny_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2846
  • Accuracy: 0.8767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8735 1.0 225 0.9170 0.545
0.6877 2.0 450 0.6945 0.7167
0.5875 3.0 675 0.5531 0.79
0.4761 4.0 900 0.4755 0.82
0.4339 5.0 1125 0.4319 0.83
0.3839 6.0 1350 0.4018 0.8483
0.4408 7.0 1575 0.3811 0.85
0.4281 8.0 1800 0.3653 0.8583
0.3652 9.0 2025 0.3551 0.8533
0.324 10.0 2250 0.3480 0.8567
0.3571 11.0 2475 0.3391 0.86
0.3339 12.0 2700 0.3292 0.86
0.343 13.0 2925 0.3232 0.865
0.3099 14.0 3150 0.3188 0.8633
0.2636 15.0 3375 0.3160 0.87
0.2725 16.0 3600 0.3109 0.8633
0.2598 17.0 3825 0.3041 0.8717
0.2377 18.0 4050 0.3051 0.8683
0.2636 19.0 4275 0.2990 0.8683
0.2944 20.0 4500 0.2992 0.8733
0.2247 21.0 4725 0.2983 0.8733
0.2126 22.0 4950 0.2963 0.8733
0.2221 23.0 5175 0.2922 0.8783
0.2198 24.0 5400 0.2918 0.8717
0.2574 25.0 5625 0.2955 0.88
0.2932 26.0 5850 0.2903 0.88
0.2755 27.0 6075 0.2866 0.8767
0.2735 28.0 6300 0.2890 0.8783
0.2207 29.0 6525 0.2874 0.88
0.1879 30.0 6750 0.2869 0.875
0.1763 31.0 6975 0.2867 0.88
0.2308 32.0 7200 0.2871 0.8733
0.1914 33.0 7425 0.2850 0.8767
0.1699 34.0 7650 0.2866 0.875
0.1804 35.0 7875 0.2842 0.88
0.182 36.0 8100 0.2861 0.8783
0.2385 37.0 8325 0.2854 0.8783
0.1637 38.0 8550 0.2879 0.8783
0.1554 39.0 8775 0.2876 0.8767
0.2151 40.0 9000 0.2856 0.8783
0.1931 41.0 9225 0.2849 0.8783
0.1711 42.0 9450 0.2846 0.8783
0.2357 43.0 9675 0.2864 0.8783
0.202 44.0 9900 0.2845 0.88
0.1905 45.0 10125 0.2855 0.88
0.1822 46.0 10350 0.2847 0.8767
0.2034 47.0 10575 0.2849 0.8767
0.1793 48.0 10800 0.2851 0.8767
0.2049 49.0 11025 0.2846 0.8767
0.168 50.0 11250 0.2846 0.8767

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2