metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_small_rms_0001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9048414023372288
smids_5x_deit_small_rms_0001_fold1
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9277
- Accuracy: 0.9048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2576 | 1.0 | 376 | 0.2886 | 0.8915 |
0.132 | 2.0 | 752 | 0.3675 | 0.8881 |
0.153 | 3.0 | 1128 | 0.3722 | 0.8815 |
0.1012 | 4.0 | 1504 | 0.5411 | 0.8715 |
0.0774 | 5.0 | 1880 | 0.4743 | 0.8881 |
0.0966 | 6.0 | 2256 | 0.5187 | 0.8831 |
0.02 | 7.0 | 2632 | 0.7637 | 0.8548 |
0.0255 | 8.0 | 3008 | 0.5858 | 0.8982 |
0.0535 | 9.0 | 3384 | 0.7179 | 0.8798 |
0.0051 | 10.0 | 3760 | 0.4830 | 0.9132 |
0.0623 | 11.0 | 4136 | 0.6803 | 0.8898 |
0.032 | 12.0 | 4512 | 0.6393 | 0.8831 |
0.0049 | 13.0 | 4888 | 0.6430 | 0.8965 |
0.0375 | 14.0 | 5264 | 0.6697 | 0.8948 |
0.0305 | 15.0 | 5640 | 0.4958 | 0.9165 |
0.0041 | 16.0 | 6016 | 0.6462 | 0.8965 |
0.0225 | 17.0 | 6392 | 0.6064 | 0.9065 |
0.0015 | 18.0 | 6768 | 0.7328 | 0.8865 |
0.0129 | 19.0 | 7144 | 0.6712 | 0.8848 |
0.0072 | 20.0 | 7520 | 0.7644 | 0.8881 |
0.002 | 21.0 | 7896 | 0.6536 | 0.9065 |
0.0135 | 22.0 | 8272 | 0.7707 | 0.8881 |
0.0245 | 23.0 | 8648 | 0.6111 | 0.8948 |
0.0006 | 24.0 | 9024 | 0.7622 | 0.8881 |
0.0001 | 25.0 | 9400 | 0.7257 | 0.9015 |
0.0065 | 26.0 | 9776 | 0.7266 | 0.8948 |
0.0001 | 27.0 | 10152 | 0.7834 | 0.9082 |
0.0001 | 28.0 | 10528 | 0.7481 | 0.9032 |
0.0047 | 29.0 | 10904 | 0.8083 | 0.8915 |
0.0032 | 30.0 | 11280 | 0.7670 | 0.8948 |
0.0008 | 31.0 | 11656 | 0.8608 | 0.8881 |
0.0001 | 32.0 | 12032 | 0.7792 | 0.8948 |
0.0001 | 33.0 | 12408 | 0.8789 | 0.8932 |
0.0 | 34.0 | 12784 | 0.7571 | 0.9015 |
0.0 | 35.0 | 13160 | 0.7309 | 0.9115 |
0.0002 | 36.0 | 13536 | 0.7237 | 0.9082 |
0.0 | 37.0 | 13912 | 0.8459 | 0.9015 |
0.0 | 38.0 | 14288 | 0.8205 | 0.9082 |
0.0 | 39.0 | 14664 | 0.8617 | 0.9048 |
0.0 | 40.0 | 15040 | 0.8709 | 0.8932 |
0.0 | 41.0 | 15416 | 0.8732 | 0.8915 |
0.0 | 42.0 | 15792 | 0.8524 | 0.8982 |
0.0 | 43.0 | 16168 | 0.8924 | 0.9048 |
0.0 | 44.0 | 16544 | 0.8692 | 0.8898 |
0.0 | 45.0 | 16920 | 0.8944 | 0.9015 |
0.0031 | 46.0 | 17296 | 0.8984 | 0.9032 |
0.0 | 47.0 | 17672 | 0.9119 | 0.9032 |
0.0 | 48.0 | 18048 | 0.9192 | 0.9048 |
0.0 | 49.0 | 18424 | 0.9260 | 0.9032 |
0.0023 | 50.0 | 18800 | 0.9277 | 0.9048 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2