hkivancoral's picture
End of training
7ae6e64
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_small_rms_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7966666666666666

smids_5x_deit_small_rms_001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5638
  • Accuracy: 0.7967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8408 1.0 375 0.8491 0.5383
0.836 2.0 750 0.8820 0.4983
0.8155 3.0 1125 0.8200 0.5917
0.829 4.0 1500 0.7980 0.5933
0.8032 5.0 1875 0.8027 0.5967
0.8095 6.0 2250 0.7557 0.635
0.7468 7.0 2625 0.7635 0.65
0.7133 8.0 3000 0.7025 0.6667
0.6424 9.0 3375 0.8608 0.6467
0.6511 10.0 3750 0.6834 0.6817
0.6928 11.0 4125 0.7883 0.6183
0.6757 12.0 4500 0.7380 0.635
0.6473 13.0 4875 0.6942 0.6633
0.5828 14.0 5250 0.6863 0.7117
0.5787 15.0 5625 0.6877 0.6933
0.5711 16.0 6000 0.7012 0.685
0.6198 17.0 6375 0.6000 0.7183
0.6331 18.0 6750 0.6316 0.7217
0.5457 19.0 7125 0.6381 0.7333
0.585 20.0 7500 0.6083 0.7367
0.4779 21.0 7875 0.6292 0.7
0.4504 22.0 8250 0.5995 0.7533
0.513 23.0 8625 0.6005 0.735
0.5931 24.0 9000 0.5450 0.76
0.4836 25.0 9375 0.5749 0.7517
0.4981 26.0 9750 0.5577 0.77
0.5035 27.0 10125 0.5452 0.7583
0.4996 28.0 10500 0.5583 0.765
0.4767 29.0 10875 0.5589 0.765
0.4202 30.0 11250 0.5291 0.78
0.4307 31.0 11625 0.5250 0.7967
0.5107 32.0 12000 0.5223 0.7917
0.4923 33.0 12375 0.5101 0.7917
0.4996 34.0 12750 0.5329 0.79
0.3762 35.0 13125 0.5542 0.79
0.4379 36.0 13500 0.5598 0.7883
0.4018 37.0 13875 0.5521 0.7983
0.4033 38.0 14250 0.5506 0.7767
0.4228 39.0 14625 0.5150 0.7917
0.366 40.0 15000 0.5580 0.8017
0.3549 41.0 15375 0.5360 0.8067
0.3677 42.0 15750 0.5521 0.8
0.4255 43.0 16125 0.5412 0.8033
0.355 44.0 16500 0.5640 0.7717
0.3586 45.0 16875 0.5441 0.7783
0.3404 46.0 17250 0.5592 0.7867
0.3867 47.0 17625 0.5593 0.8
0.3586 48.0 18000 0.5571 0.8067
0.2696 49.0 18375 0.5541 0.8
0.3761 50.0 18750 0.5638 0.7967

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2