hkivancoral's picture
End of training
ac8b347
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_small_sgd_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5158597662771286

smids_5x_deit_small_sgd_00001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9977
  • Accuracy: 0.5159

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0592 1.0 376 1.0737 0.4391
1.0782 2.0 752 1.0706 0.4374
1.0408 3.0 1128 1.0676 0.4391
1.0826 4.0 1504 1.0646 0.4441
1.0586 5.0 1880 1.0616 0.4407
1.0333 6.0 2256 1.0588 0.4424
1.0668 7.0 2632 1.0559 0.4424
1.0617 8.0 3008 1.0531 0.4441
1.0464 9.0 3384 1.0504 0.4457
1.0296 10.0 3760 1.0477 0.4474
1.0219 11.0 4136 1.0452 0.4524
1.036 12.0 4512 1.0426 0.4558
1.0086 13.0 4888 1.0402 0.4591
1.0374 14.0 5264 1.0378 0.4591
1.0308 15.0 5640 1.0354 0.4624
1.0138 16.0 6016 1.0332 0.4641
1.039 17.0 6392 1.0310 0.4674
1.0251 18.0 6768 1.0289 0.4691
1.0132 19.0 7144 1.0268 0.4674
1.0078 20.0 7520 1.0248 0.4674
1.0073 21.0 7896 1.0229 0.4741
0.9973 22.0 8272 1.0210 0.4775
0.9979 23.0 8648 1.0192 0.4791
0.9943 24.0 9024 1.0175 0.4791
0.9653 25.0 9400 1.0159 0.4841
0.9982 26.0 9776 1.0143 0.4841
1.0041 27.0 10152 1.0128 0.4875
1.0054 28.0 10528 1.0114 0.4908
0.9643 29.0 10904 1.0101 0.4925
0.9735 30.0 11280 1.0088 0.4958
1.0 31.0 11656 1.0076 0.4958
0.998 32.0 12032 1.0064 0.4975
0.9763 33.0 12408 1.0054 0.4975
0.9704 34.0 12784 1.0044 0.4992
0.9948 35.0 13160 1.0035 0.5008
0.9708 36.0 13536 1.0026 0.5008
0.9711 37.0 13912 1.0019 0.5025
0.999 38.0 14288 1.0012 0.5042
0.9534 39.0 14664 1.0005 0.5042
0.9776 40.0 15040 1.0000 0.5058
1.0022 41.0 15416 0.9995 0.5058
0.9618 42.0 15792 0.9991 0.5058
0.9978 43.0 16168 0.9987 0.5109
0.9845 44.0 16544 0.9984 0.5142
0.9783 45.0 16920 0.9982 0.5159
0.99 46.0 17296 0.9980 0.5159
0.9708 47.0 17672 0.9979 0.5159
1.0004 48.0 18048 0.9978 0.5159
0.9871 49.0 18424 0.9977 0.5159
0.9947 50.0 18800 0.9977 0.5159

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2