hkivancoral's picture
End of training
a4755e8
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_small_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8116666666666666

smids_5x_deit_small_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4899
  • Accuracy: 0.8117

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0575 1.0 375 1.0409 0.4667
0.9896 2.0 750 1.0031 0.5117
0.9428 3.0 1125 0.9645 0.5567
0.9186 4.0 1500 0.9265 0.615
0.8922 5.0 1875 0.8895 0.6483
0.8541 6.0 2250 0.8539 0.6717
0.7885 7.0 2625 0.8194 0.69
0.7714 8.0 3000 0.7879 0.705
0.758 9.0 3375 0.7592 0.7133
0.7212 10.0 3750 0.7334 0.7217
0.6793 11.0 4125 0.7102 0.7333
0.6484 12.0 4500 0.6895 0.7367
0.6765 13.0 4875 0.6713 0.7467
0.664 14.0 5250 0.6548 0.7533
0.6332 15.0 5625 0.6395 0.7617
0.5983 16.0 6000 0.6261 0.77
0.6122 17.0 6375 0.6142 0.77
0.5912 18.0 6750 0.6024 0.7733
0.5764 19.0 7125 0.5918 0.775
0.5461 20.0 7500 0.5824 0.7783
0.5245 21.0 7875 0.5733 0.7833
0.5339 22.0 8250 0.5654 0.7867
0.5651 23.0 8625 0.5584 0.7867
0.5365 24.0 9000 0.5518 0.7933
0.4982 25.0 9375 0.5457 0.795
0.5274 26.0 9750 0.5402 0.7933
0.5167 27.0 10125 0.5353 0.795
0.53 28.0 10500 0.5303 0.7967
0.5404 29.0 10875 0.5260 0.7967
0.4414 30.0 11250 0.5222 0.8017
0.5269 31.0 11625 0.5183 0.8017
0.5299 32.0 12000 0.5150 0.8017
0.5311 33.0 12375 0.5120 0.8033
0.499 34.0 12750 0.5091 0.8033
0.4712 35.0 13125 0.5065 0.8033
0.4169 36.0 13500 0.5042 0.8017
0.4803 37.0 13875 0.5020 0.8017
0.4796 38.0 14250 0.5001 0.805
0.4865 39.0 14625 0.4984 0.8067
0.5122 40.0 15000 0.4967 0.8083
0.4785 41.0 15375 0.4953 0.8067
0.4562 42.0 15750 0.4941 0.8083
0.5248 43.0 16125 0.4930 0.8117
0.4817 44.0 16500 0.4922 0.8117
0.4662 45.0 16875 0.4914 0.8117
0.4968 46.0 17250 0.4908 0.8117
0.5157 47.0 17625 0.4904 0.8117
0.4378 48.0 18000 0.4901 0.8117
0.4668 49.0 18375 0.4899 0.8117
0.4722 50.0 18750 0.4899 0.8117

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2