hkivancoral's picture
End of training
012c036
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8983333333333333

smids_5x_deit_tiny_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8422
  • Accuracy: 0.8983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2997 1.0 375 0.3235 0.88
0.2668 2.0 750 0.2793 0.8967
0.1125 3.0 1125 0.2572 0.9117
0.1056 4.0 1500 0.2703 0.9117
0.1075 5.0 1875 0.3070 0.8983
0.0954 6.0 2250 0.3649 0.8917
0.0479 7.0 2625 0.3675 0.91
0.0335 8.0 3000 0.4528 0.905
0.0032 9.0 3375 0.4970 0.9
0.0009 10.0 3750 0.5488 0.9167
0.0002 11.0 4125 0.5799 0.8983
0.0004 12.0 4500 0.6150 0.9067
0.0001 13.0 4875 0.6403 0.9083
0.0001 14.0 5250 0.6886 0.9017
0.0008 15.0 5625 0.6997 0.9083
0.0 16.0 6000 0.7289 0.9067
0.0 17.0 6375 0.7468 0.905
0.0 18.0 6750 0.7378 0.905
0.0 19.0 7125 0.7534 0.9033
0.0 20.0 7500 0.7571 0.9083
0.0 21.0 7875 0.7624 0.9033
0.0 22.0 8250 0.7704 0.9083
0.0049 23.0 8625 0.8162 0.9017
0.0 24.0 9000 0.7799 0.9033
0.0 25.0 9375 0.8193 0.9033
0.0 26.0 9750 0.7928 0.9033
0.0 27.0 10125 0.7850 0.9017
0.0 28.0 10500 0.8132 0.9
0.0 29.0 10875 0.8205 0.8983
0.0038 30.0 11250 0.8084 0.905
0.0 31.0 11625 0.8179 0.9017
0.0 32.0 12000 0.8194 0.8983
0.0 33.0 12375 0.8163 0.9017
0.0 34.0 12750 0.8152 0.9067
0.0 35.0 13125 0.8374 0.8983
0.0 36.0 13500 0.8315 0.8983
0.0 37.0 13875 0.8335 0.8967
0.0 38.0 14250 0.8285 0.8983
0.0 39.0 14625 0.8274 0.9033
0.0022 40.0 15000 0.8347 0.9017
0.0 41.0 15375 0.8356 0.9
0.0 42.0 15750 0.8391 0.9
0.0 43.0 16125 0.8395 0.8983
0.0 44.0 16500 0.8400 0.8983
0.0 45.0 16875 0.8413 0.8983
0.0 46.0 17250 0.8418 0.8983
0.0 47.0 17625 0.8416 0.8983
0.0 48.0 18000 0.8421 0.8983
0.0 49.0 18375 0.8423 0.8983
0.0 50.0 18750 0.8422 0.8983

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2