hkivancoral's picture
End of training
7f46505
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8933333333333333

smids_5x_deit_tiny_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8918
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3356 1.0 375 0.3637 0.8583
0.2941 2.0 750 0.2859 0.8917
0.2173 3.0 1125 0.2723 0.8933
0.2107 4.0 1500 0.2619 0.9017
0.1256 5.0 1875 0.3096 0.8767
0.0844 6.0 2250 0.2740 0.8983
0.0863 7.0 2625 0.3155 0.895
0.0472 8.0 3000 0.3497 0.895
0.0763 9.0 3375 0.3686 0.895
0.0335 10.0 3750 0.4149 0.8967
0.0338 11.0 4125 0.4756 0.8933
0.0184 12.0 4500 0.5125 0.89
0.0027 13.0 4875 0.6023 0.8767
0.0397 14.0 5250 0.6231 0.885
0.0014 15.0 5625 0.7069 0.8733
0.0003 16.0 6000 0.6770 0.8983
0.0258 17.0 6375 0.7038 0.895
0.0256 18.0 6750 0.7293 0.89
0.0002 19.0 7125 0.7746 0.8833
0.0001 20.0 7500 0.7738 0.8917
0.0001 21.0 7875 0.8059 0.8833
0.026 22.0 8250 0.8287 0.8933
0.0138 23.0 8625 0.8293 0.8867
0.0 24.0 9000 0.8289 0.88
0.0 25.0 9375 0.8428 0.8933
0.0001 26.0 9750 0.8343 0.8917
0.0016 27.0 10125 0.8455 0.89
0.0 28.0 10500 0.8478 0.89
0.0001 29.0 10875 0.8508 0.8917
0.0173 30.0 11250 0.8741 0.8917
0.0 31.0 11625 0.8677 0.8933
0.0 32.0 12000 0.8682 0.8933
0.0 33.0 12375 0.8819 0.8917
0.0 34.0 12750 0.8684 0.8917
0.0 35.0 13125 0.8910 0.8933
0.0 36.0 13500 0.8845 0.8933
0.0 37.0 13875 0.8700 0.8917
0.0072 38.0 14250 0.8781 0.8917
0.0 39.0 14625 0.8840 0.8933
0.0 40.0 15000 0.8993 0.895
0.0 41.0 15375 0.8767 0.8883
0.0 42.0 15750 0.8820 0.8967
0.0 43.0 16125 0.8803 0.8983
0.0 44.0 16500 0.8853 0.895
0.0 45.0 16875 0.8969 0.8917
0.0 46.0 17250 0.8999 0.8917
0.0073 47.0 17625 0.8921 0.895
0.0 48.0 18000 0.8943 0.8917
0.0 49.0 18375 0.8940 0.8933
0.0065 50.0 18750 0.8918 0.8933

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2