metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_adamax_00001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8933333333333333
smids_5x_deit_tiny_adamax_00001_fold5
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8918
- Accuracy: 0.8933
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3356 | 1.0 | 375 | 0.3637 | 0.8583 |
0.2941 | 2.0 | 750 | 0.2859 | 0.8917 |
0.2173 | 3.0 | 1125 | 0.2723 | 0.8933 |
0.2107 | 4.0 | 1500 | 0.2619 | 0.9017 |
0.1256 | 5.0 | 1875 | 0.3096 | 0.8767 |
0.0844 | 6.0 | 2250 | 0.2740 | 0.8983 |
0.0863 | 7.0 | 2625 | 0.3155 | 0.895 |
0.0472 | 8.0 | 3000 | 0.3497 | 0.895 |
0.0763 | 9.0 | 3375 | 0.3686 | 0.895 |
0.0335 | 10.0 | 3750 | 0.4149 | 0.8967 |
0.0338 | 11.0 | 4125 | 0.4756 | 0.8933 |
0.0184 | 12.0 | 4500 | 0.5125 | 0.89 |
0.0027 | 13.0 | 4875 | 0.6023 | 0.8767 |
0.0397 | 14.0 | 5250 | 0.6231 | 0.885 |
0.0014 | 15.0 | 5625 | 0.7069 | 0.8733 |
0.0003 | 16.0 | 6000 | 0.6770 | 0.8983 |
0.0258 | 17.0 | 6375 | 0.7038 | 0.895 |
0.0256 | 18.0 | 6750 | 0.7293 | 0.89 |
0.0002 | 19.0 | 7125 | 0.7746 | 0.8833 |
0.0001 | 20.0 | 7500 | 0.7738 | 0.8917 |
0.0001 | 21.0 | 7875 | 0.8059 | 0.8833 |
0.026 | 22.0 | 8250 | 0.8287 | 0.8933 |
0.0138 | 23.0 | 8625 | 0.8293 | 0.8867 |
0.0 | 24.0 | 9000 | 0.8289 | 0.88 |
0.0 | 25.0 | 9375 | 0.8428 | 0.8933 |
0.0001 | 26.0 | 9750 | 0.8343 | 0.8917 |
0.0016 | 27.0 | 10125 | 0.8455 | 0.89 |
0.0 | 28.0 | 10500 | 0.8478 | 0.89 |
0.0001 | 29.0 | 10875 | 0.8508 | 0.8917 |
0.0173 | 30.0 | 11250 | 0.8741 | 0.8917 |
0.0 | 31.0 | 11625 | 0.8677 | 0.8933 |
0.0 | 32.0 | 12000 | 0.8682 | 0.8933 |
0.0 | 33.0 | 12375 | 0.8819 | 0.8917 |
0.0 | 34.0 | 12750 | 0.8684 | 0.8917 |
0.0 | 35.0 | 13125 | 0.8910 | 0.8933 |
0.0 | 36.0 | 13500 | 0.8845 | 0.8933 |
0.0 | 37.0 | 13875 | 0.8700 | 0.8917 |
0.0072 | 38.0 | 14250 | 0.8781 | 0.8917 |
0.0 | 39.0 | 14625 | 0.8840 | 0.8933 |
0.0 | 40.0 | 15000 | 0.8993 | 0.895 |
0.0 | 41.0 | 15375 | 0.8767 | 0.8883 |
0.0 | 42.0 | 15750 | 0.8820 | 0.8967 |
0.0 | 43.0 | 16125 | 0.8803 | 0.8983 |
0.0 | 44.0 | 16500 | 0.8853 | 0.895 |
0.0 | 45.0 | 16875 | 0.8969 | 0.8917 |
0.0 | 46.0 | 17250 | 0.8999 | 0.8917 |
0.0073 | 47.0 | 17625 | 0.8921 | 0.895 |
0.0 | 48.0 | 18000 | 0.8943 | 0.8917 |
0.0 | 49.0 | 18375 | 0.8940 | 0.8933 |
0.0065 | 50.0 | 18750 | 0.8918 | 0.8933 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2