metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_adamax_0001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9066666666666666
smids_5x_deit_tiny_adamax_0001_fold5
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9117
- Accuracy: 0.9067
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1964 | 1.0 | 375 | 0.3187 | 0.86 |
0.1451 | 2.0 | 750 | 0.2705 | 0.905 |
0.0998 | 3.0 | 1125 | 0.3251 | 0.905 |
0.0219 | 4.0 | 1500 | 0.4834 | 0.89 |
0.034 | 5.0 | 1875 | 0.5396 | 0.8967 |
0.0222 | 6.0 | 2250 | 0.4814 | 0.9133 |
0.0006 | 7.0 | 2625 | 0.6569 | 0.9133 |
0.013 | 8.0 | 3000 | 0.5398 | 0.91 |
0.001 | 9.0 | 3375 | 0.6798 | 0.9117 |
0.0003 | 10.0 | 3750 | 0.7290 | 0.9083 |
0.0012 | 11.0 | 4125 | 0.7598 | 0.9067 |
0.0 | 12.0 | 4500 | 0.6815 | 0.9167 |
0.0001 | 13.0 | 4875 | 0.7765 | 0.895 |
0.0004 | 14.0 | 5250 | 0.6391 | 0.9117 |
0.0001 | 15.0 | 5625 | 0.8172 | 0.9067 |
0.003 | 16.0 | 6000 | 0.6833 | 0.9083 |
0.0 | 17.0 | 6375 | 0.7002 | 0.9133 |
0.0103 | 18.0 | 6750 | 0.7679 | 0.91 |
0.0 | 19.0 | 7125 | 0.8144 | 0.905 |
0.0 | 20.0 | 7500 | 0.8111 | 0.905 |
0.0 | 21.0 | 7875 | 0.8619 | 0.9 |
0.0063 | 22.0 | 8250 | 0.7672 | 0.9117 |
0.0001 | 23.0 | 8625 | 0.8118 | 0.905 |
0.0 | 24.0 | 9000 | 0.7951 | 0.9133 |
0.0 | 25.0 | 9375 | 0.8220 | 0.9033 |
0.0 | 26.0 | 9750 | 0.7685 | 0.915 |
0.0 | 27.0 | 10125 | 0.8895 | 0.9 |
0.0 | 28.0 | 10500 | 0.7796 | 0.9167 |
0.0 | 29.0 | 10875 | 0.8774 | 0.9083 |
0.0031 | 30.0 | 11250 | 0.8526 | 0.905 |
0.0 | 31.0 | 11625 | 0.9000 | 0.9 |
0.0 | 32.0 | 12000 | 0.8541 | 0.9067 |
0.0 | 33.0 | 12375 | 0.8916 | 0.905 |
0.0 | 34.0 | 12750 | 0.8844 | 0.905 |
0.0 | 35.0 | 13125 | 0.8624 | 0.9067 |
0.0 | 36.0 | 13500 | 0.8971 | 0.9017 |
0.0 | 37.0 | 13875 | 0.8894 | 0.9083 |
0.003 | 38.0 | 14250 | 0.8778 | 0.905 |
0.0 | 39.0 | 14625 | 0.8771 | 0.9083 |
0.0 | 40.0 | 15000 | 0.8911 | 0.905 |
0.0 | 41.0 | 15375 | 0.8755 | 0.91 |
0.0 | 42.0 | 15750 | 0.8923 | 0.905 |
0.0 | 43.0 | 16125 | 0.8874 | 0.9067 |
0.0 | 44.0 | 16500 | 0.8938 | 0.9067 |
0.0 | 45.0 | 16875 | 0.8983 | 0.9067 |
0.0 | 46.0 | 17250 | 0.9065 | 0.9067 |
0.0027 | 47.0 | 17625 | 0.9068 | 0.9067 |
0.0 | 48.0 | 18000 | 0.9127 | 0.905 |
0.0 | 49.0 | 18375 | 0.9142 | 0.905 |
0.0023 | 50.0 | 18750 | 0.9117 | 0.9067 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2