metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_adamax_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8901830282861897
smids_5x_deit_tiny_adamax_001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1513
- Accuracy: 0.8902
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3758 | 1.0 | 375 | 0.3275 | 0.8619 |
0.3244 | 2.0 | 750 | 0.4328 | 0.8403 |
0.3305 | 3.0 | 1125 | 0.3559 | 0.8586 |
0.2057 | 4.0 | 1500 | 0.3484 | 0.8752 |
0.2037 | 5.0 | 1875 | 0.3334 | 0.8918 |
0.109 | 6.0 | 2250 | 0.3396 | 0.8869 |
0.1296 | 7.0 | 2625 | 0.4274 | 0.8719 |
0.1447 | 8.0 | 3000 | 0.4555 | 0.8569 |
0.0656 | 9.0 | 3375 | 0.4650 | 0.8869 |
0.0303 | 10.0 | 3750 | 0.5987 | 0.8602 |
0.0379 | 11.0 | 4125 | 0.5753 | 0.8835 |
0.0368 | 12.0 | 4500 | 0.6264 | 0.8669 |
0.0495 | 13.0 | 4875 | 0.6979 | 0.8569 |
0.0376 | 14.0 | 5250 | 0.7442 | 0.8636 |
0.0604 | 15.0 | 5625 | 0.8422 | 0.8636 |
0.0353 | 16.0 | 6000 | 0.7521 | 0.8852 |
0.0761 | 17.0 | 6375 | 0.7920 | 0.8752 |
0.004 | 18.0 | 6750 | 1.0354 | 0.8702 |
0.0148 | 19.0 | 7125 | 0.7279 | 0.8785 |
0.0237 | 20.0 | 7500 | 0.7424 | 0.8735 |
0.0011 | 21.0 | 7875 | 0.7919 | 0.8802 |
0.0017 | 22.0 | 8250 | 0.8106 | 0.8918 |
0.0086 | 23.0 | 8625 | 0.8451 | 0.8735 |
0.0037 | 24.0 | 9000 | 0.8674 | 0.8735 |
0.0002 | 25.0 | 9375 | 0.8393 | 0.8869 |
0.0036 | 26.0 | 9750 | 0.8897 | 0.8902 |
0.0019 | 27.0 | 10125 | 0.8685 | 0.8885 |
0.0 | 28.0 | 10500 | 0.8366 | 0.8902 |
0.0007 | 29.0 | 10875 | 0.9524 | 0.8985 |
0.0002 | 30.0 | 11250 | 0.9036 | 0.8918 |
0.0073 | 31.0 | 11625 | 0.9747 | 0.8935 |
0.0057 | 32.0 | 12000 | 0.9823 | 0.8885 |
0.0116 | 33.0 | 12375 | 0.9806 | 0.8935 |
0.0 | 34.0 | 12750 | 1.0179 | 0.8885 |
0.0 | 35.0 | 13125 | 1.0978 | 0.8785 |
0.0 | 36.0 | 13500 | 0.9957 | 0.8852 |
0.0 | 37.0 | 13875 | 1.0261 | 0.8902 |
0.0 | 38.0 | 14250 | 1.0512 | 0.8885 |
0.0 | 39.0 | 14625 | 1.0513 | 0.8902 |
0.0035 | 40.0 | 15000 | 1.0782 | 0.8902 |
0.0 | 41.0 | 15375 | 1.0839 | 0.8885 |
0.0032 | 42.0 | 15750 | 1.1078 | 0.8885 |
0.0027 | 43.0 | 16125 | 1.1099 | 0.8902 |
0.0028 | 44.0 | 16500 | 1.1218 | 0.8902 |
0.0032 | 45.0 | 16875 | 1.1207 | 0.8885 |
0.0 | 46.0 | 17250 | 1.1330 | 0.8885 |
0.0059 | 47.0 | 17625 | 1.1405 | 0.8885 |
0.0 | 48.0 | 18000 | 1.1472 | 0.8885 |
0.0026 | 49.0 | 18375 | 1.1507 | 0.8885 |
0.0022 | 50.0 | 18750 | 1.1513 | 0.8902 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2