hkivancoral's picture
End of training
b0ddcd3
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8901830282861897

smids_5x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1513
  • Accuracy: 0.8902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3758 1.0 375 0.3275 0.8619
0.3244 2.0 750 0.4328 0.8403
0.3305 3.0 1125 0.3559 0.8586
0.2057 4.0 1500 0.3484 0.8752
0.2037 5.0 1875 0.3334 0.8918
0.109 6.0 2250 0.3396 0.8869
0.1296 7.0 2625 0.4274 0.8719
0.1447 8.0 3000 0.4555 0.8569
0.0656 9.0 3375 0.4650 0.8869
0.0303 10.0 3750 0.5987 0.8602
0.0379 11.0 4125 0.5753 0.8835
0.0368 12.0 4500 0.6264 0.8669
0.0495 13.0 4875 0.6979 0.8569
0.0376 14.0 5250 0.7442 0.8636
0.0604 15.0 5625 0.8422 0.8636
0.0353 16.0 6000 0.7521 0.8852
0.0761 17.0 6375 0.7920 0.8752
0.004 18.0 6750 1.0354 0.8702
0.0148 19.0 7125 0.7279 0.8785
0.0237 20.0 7500 0.7424 0.8735
0.0011 21.0 7875 0.7919 0.8802
0.0017 22.0 8250 0.8106 0.8918
0.0086 23.0 8625 0.8451 0.8735
0.0037 24.0 9000 0.8674 0.8735
0.0002 25.0 9375 0.8393 0.8869
0.0036 26.0 9750 0.8897 0.8902
0.0019 27.0 10125 0.8685 0.8885
0.0 28.0 10500 0.8366 0.8902
0.0007 29.0 10875 0.9524 0.8985
0.0002 30.0 11250 0.9036 0.8918
0.0073 31.0 11625 0.9747 0.8935
0.0057 32.0 12000 0.9823 0.8885
0.0116 33.0 12375 0.9806 0.8935
0.0 34.0 12750 1.0179 0.8885
0.0 35.0 13125 1.0978 0.8785
0.0 36.0 13500 0.9957 0.8852
0.0 37.0 13875 1.0261 0.8902
0.0 38.0 14250 1.0512 0.8885
0.0 39.0 14625 1.0513 0.8902
0.0035 40.0 15000 1.0782 0.8902
0.0 41.0 15375 1.0839 0.8885
0.0032 42.0 15750 1.1078 0.8885
0.0027 43.0 16125 1.1099 0.8902
0.0028 44.0 16500 1.1218 0.8902
0.0032 45.0 16875 1.1207 0.8885
0.0 46.0 17250 1.1330 0.8885
0.0059 47.0 17625 1.1405 0.8885
0.0 48.0 18000 1.1472 0.8885
0.0026 49.0 18375 1.1507 0.8885
0.0022 50.0 18750 1.1513 0.8902

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2