hkivancoral's picture
End of training
d917ec4
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.865

smids_5x_deit_tiny_adamax_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5310
  • Accuracy: 0.865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4168 1.0 375 0.3631 0.85
0.2785 2.0 750 0.4582 0.82
0.1977 3.0 1125 0.4757 0.845
0.2154 4.0 1500 0.4151 0.8567
0.2216 5.0 1875 0.4921 0.84
0.1277 6.0 2250 0.5208 0.84
0.1577 7.0 2625 0.6509 0.84
0.1043 8.0 3000 0.6131 0.8483
0.0606 9.0 3375 0.7321 0.85
0.0399 10.0 3750 0.7332 0.8483
0.0878 11.0 4125 0.7794 0.86
0.0753 12.0 4500 0.9361 0.855
0.0315 13.0 4875 0.7541 0.87
0.0322 14.0 5250 0.8827 0.855
0.0291 15.0 5625 0.8552 0.8667
0.0323 16.0 6000 1.0097 0.8533
0.0358 17.0 6375 1.0442 0.8367
0.0726 18.0 6750 1.0675 0.8533
0.0105 19.0 7125 1.0350 0.8567
0.0155 20.0 7500 1.0612 0.8467
0.0001 21.0 7875 1.1933 0.8467
0.001 22.0 8250 0.9964 0.86
0.0061 23.0 8625 1.0207 0.86
0.0139 24.0 9000 1.1598 0.8467
0.0232 25.0 9375 1.1652 0.8583
0.0001 26.0 9750 1.1454 0.8583
0.0011 27.0 10125 1.1331 0.865
0.0 28.0 10500 1.2646 0.8667
0.0 29.0 10875 1.1994 0.8683
0.0001 30.0 11250 1.2306 0.8533
0.004 31.0 11625 1.2452 0.8617
0.0 32.0 12000 1.2904 0.8633
0.0 33.0 12375 1.3971 0.86
0.0001 34.0 12750 1.2738 0.8633
0.0 35.0 13125 1.4099 0.865
0.0 36.0 13500 1.3138 0.8633
0.0 37.0 13875 1.3962 0.8617
0.0037 38.0 14250 1.4247 0.8633
0.0 39.0 14625 1.4177 0.865
0.0 40.0 15000 1.4033 0.8633
0.0 41.0 15375 1.4591 0.8633
0.0 42.0 15750 1.4725 0.8617
0.0 43.0 16125 1.4752 0.8633
0.0 44.0 16500 1.4834 0.8633
0.0 45.0 16875 1.4967 0.8633
0.0 46.0 17250 1.5039 0.8633
0.0 47.0 17625 1.5125 0.8633
0.0 48.0 18000 1.5211 0.8633
0.0 49.0 18375 1.5277 0.865
0.0 50.0 18750 1.5310 0.865

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2