hkivancoral's picture
End of training
5b36a8f
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_rms_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9048414023372288

smids_5x_deit_tiny_rms_0001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9972
  • Accuracy: 0.9048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2949 1.0 376 0.4792 0.7896
0.1877 2.0 752 0.3869 0.8631
0.1943 3.0 1128 0.4273 0.8514
0.1151 4.0 1504 0.4170 0.8932
0.1309 5.0 1880 0.4159 0.8748
0.0937 6.0 2256 0.5222 0.8831
0.0299 7.0 2632 0.5974 0.8932
0.0659 8.0 3008 0.6171 0.8715
0.0586 9.0 3384 0.7200 0.8781
0.0715 10.0 3760 0.9149 0.8664
0.0752 11.0 4136 0.7964 0.8765
0.0401 12.0 4512 0.6968 0.8831
0.0094 13.0 4888 0.6898 0.8865
0.0111 14.0 5264 0.7411 0.8932
0.0334 15.0 5640 0.8411 0.8798
0.0369 16.0 6016 0.7849 0.8798
0.0017 17.0 6392 0.7191 0.8898
0.0026 18.0 6768 0.8047 0.8815
0.0265 19.0 7144 0.6550 0.8982
0.0527 20.0 7520 0.7590 0.8798
0.0052 21.0 7896 0.7860 0.8881
0.001 22.0 8272 0.8487 0.8965
0.0432 23.0 8648 0.8524 0.8865
0.0032 24.0 9024 0.8174 0.9015
0.0001 25.0 9400 0.8214 0.8815
0.0146 26.0 9776 0.9080 0.8765
0.0 27.0 10152 0.8028 0.9032
0.0001 28.0 10528 0.9579 0.8915
0.0043 29.0 10904 0.8349 0.8982
0.0053 30.0 11280 0.9140 0.8831
0.0204 31.0 11656 0.9273 0.8898
0.0001 32.0 12032 0.9480 0.8848
0.0006 33.0 12408 1.0366 0.8865
0.0042 34.0 12784 1.0682 0.8798
0.0025 35.0 13160 0.9542 0.8932
0.0006 36.0 13536 0.8930 0.9048
0.0001 37.0 13912 0.9451 0.8932
0.0112 38.0 14288 1.0303 0.8848
0.0 39.0 14664 1.0298 0.8932
0.0 40.0 15040 0.9996 0.8932
0.0 41.0 15416 0.9909 0.8998
0.0 42.0 15792 0.9652 0.9015
0.0 43.0 16168 0.9547 0.9032
0.0 44.0 16544 0.9994 0.8982
0.0 45.0 16920 0.9802 0.9015
0.003 46.0 17296 0.9911 0.9032
0.0 47.0 17672 0.9936 0.9048
0.0 48.0 18048 0.9937 0.9048
0.0 49.0 18424 0.9932 0.9048
0.0025 50.0 18800 0.9972 0.9048

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2