metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_rms_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7766666666666666
smids_5x_deit_tiny_rms_001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8753
- Accuracy: 0.7767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7906 | 1.0 | 375 | 0.9128 | 0.4983 |
0.7765 | 2.0 | 750 | 0.9232 | 0.4617 |
0.7977 | 3.0 | 1125 | 0.8743 | 0.5267 |
0.8093 | 4.0 | 1500 | 0.7926 | 0.5767 |
0.8508 | 5.0 | 1875 | 0.7894 | 0.5733 |
0.7532 | 6.0 | 2250 | 0.7991 | 0.6117 |
0.7584 | 7.0 | 2625 | 0.7566 | 0.625 |
0.7398 | 8.0 | 3000 | 0.7364 | 0.6083 |
0.7009 | 9.0 | 3375 | 0.7452 | 0.64 |
0.7014 | 10.0 | 3750 | 0.7192 | 0.6433 |
0.7226 | 11.0 | 4125 | 0.7119 | 0.6383 |
0.7293 | 12.0 | 4500 | 0.7180 | 0.6467 |
0.6344 | 13.0 | 4875 | 0.7612 | 0.6117 |
0.6251 | 14.0 | 5250 | 0.7810 | 0.66 |
0.6301 | 15.0 | 5625 | 0.6950 | 0.6733 |
0.6252 | 16.0 | 6000 | 0.7106 | 0.6767 |
0.688 | 17.0 | 6375 | 0.7082 | 0.6883 |
0.7261 | 18.0 | 6750 | 0.6859 | 0.6883 |
0.5633 | 19.0 | 7125 | 0.6734 | 0.7033 |
0.6092 | 20.0 | 7500 | 0.6580 | 0.7283 |
0.4728 | 21.0 | 7875 | 0.6793 | 0.7033 |
0.5681 | 22.0 | 8250 | 0.6598 | 0.7217 |
0.5951 | 23.0 | 8625 | 0.6134 | 0.7533 |
0.6592 | 24.0 | 9000 | 0.5954 | 0.7467 |
0.5215 | 25.0 | 9375 | 0.5847 | 0.74 |
0.5272 | 26.0 | 9750 | 0.6243 | 0.7017 |
0.5866 | 27.0 | 10125 | 0.6339 | 0.7233 |
0.5766 | 28.0 | 10500 | 0.5466 | 0.765 |
0.463 | 29.0 | 10875 | 0.5734 | 0.7583 |
0.5041 | 30.0 | 11250 | 0.5320 | 0.775 |
0.5133 | 31.0 | 11625 | 0.5507 | 0.7683 |
0.5402 | 32.0 | 12000 | 0.5711 | 0.7517 |
0.4526 | 33.0 | 12375 | 0.5736 | 0.7483 |
0.4724 | 34.0 | 12750 | 0.5009 | 0.79 |
0.3951 | 35.0 | 13125 | 0.5483 | 0.77 |
0.3876 | 36.0 | 13500 | 0.5689 | 0.755 |
0.3627 | 37.0 | 13875 | 0.5639 | 0.7733 |
0.4378 | 38.0 | 14250 | 0.5663 | 0.765 |
0.3725 | 39.0 | 14625 | 0.5574 | 0.7867 |
0.3444 | 40.0 | 15000 | 0.5740 | 0.7733 |
0.3158 | 41.0 | 15375 | 0.5671 | 0.7717 |
0.29 | 42.0 | 15750 | 0.6455 | 0.78 |
0.3784 | 43.0 | 16125 | 0.6093 | 0.785 |
0.318 | 44.0 | 16500 | 0.6835 | 0.7683 |
0.2949 | 45.0 | 16875 | 0.7092 | 0.7733 |
0.2996 | 46.0 | 17250 | 0.6699 | 0.7767 |
0.2938 | 47.0 | 17625 | 0.7545 | 0.7917 |
0.2248 | 48.0 | 18000 | 0.8050 | 0.775 |
0.2309 | 49.0 | 18375 | 0.8518 | 0.7767 |
0.1878 | 50.0 | 18750 | 0.8753 | 0.7767 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2