hkivancoral's picture
End of training
991a57d
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_rms_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7433333333333333

smids_5x_deit_tiny_rms_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6094
  • Accuracy: 0.7433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8822 1.0 375 0.8719 0.52
0.8936 2.0 750 0.8470 0.535
0.8252 3.0 1125 0.8071 0.595
0.8333 4.0 1500 0.7970 0.6017
0.8046 5.0 1875 0.8070 0.5633
0.8082 6.0 2250 0.9208 0.5167
0.7481 7.0 2625 0.7984 0.5633
0.8409 8.0 3000 0.7900 0.5783
0.7673 9.0 3375 0.7551 0.62
0.7321 10.0 3750 0.7485 0.6133
0.8282 11.0 4125 0.7517 0.6083
0.7206 12.0 4500 0.7745 0.6
0.6841 13.0 4875 0.8307 0.5917
0.7738 14.0 5250 0.7274 0.6683
0.8416 15.0 5625 0.7353 0.67
0.704 16.0 6000 0.7258 0.65
0.6873 17.0 6375 0.7174 0.68
0.714 18.0 6750 0.7557 0.6483
0.7105 19.0 7125 0.6868 0.6917
0.6559 20.0 7500 0.6845 0.6783
0.6717 21.0 7875 0.7043 0.67
0.7139 22.0 8250 0.6944 0.68
0.6633 23.0 8625 0.7071 0.6667
0.6888 24.0 9000 0.6979 0.6883
0.6621 25.0 9375 0.6468 0.7117
0.6157 26.0 9750 0.6767 0.6833
0.6777 27.0 10125 0.7097 0.67
0.7108 28.0 10500 0.6811 0.6917
0.8139 29.0 10875 0.6750 0.7067
0.6291 30.0 11250 0.6415 0.7133
0.5725 31.0 11625 0.6769 0.6833
0.6243 32.0 12000 0.6733 0.7267
0.6311 33.0 12375 0.6227 0.7217
0.6254 34.0 12750 0.6222 0.72
0.567 35.0 13125 0.6040 0.735
0.5363 36.0 13500 0.5935 0.7533
0.6308 37.0 13875 0.6047 0.7267
0.5334 38.0 14250 0.6481 0.7217
0.5951 39.0 14625 0.6059 0.7317
0.6325 40.0 15000 0.6172 0.735
0.5905 41.0 15375 0.6255 0.7233
0.6095 42.0 15750 0.5896 0.7433
0.49 43.0 16125 0.5925 0.7367
0.4891 44.0 16500 0.5937 0.7367
0.4867 45.0 16875 0.5918 0.7583
0.5178 46.0 17250 0.6030 0.735
0.561 47.0 17625 0.6183 0.74
0.4632 48.0 18000 0.5943 0.7517
0.4666 49.0 18375 0.6107 0.7417
0.4901 50.0 18750 0.6094 0.7433

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2