hkivancoral's picture
End of training
3d884bb
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.88

smids_5x_deit_tiny_sgd_001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3364
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7169 1.0 375 0.7100 0.7433
0.5434 2.0 750 0.5311 0.79
0.3914 3.0 1125 0.4593 0.8267
0.3964 4.0 1500 0.4238 0.8467
0.3421 5.0 1875 0.4004 0.84
0.3188 6.0 2250 0.3866 0.845
0.3163 7.0 2625 0.3739 0.855
0.2969 8.0 3000 0.3662 0.8533
0.2771 9.0 3375 0.3587 0.8567
0.2869 10.0 3750 0.3526 0.8533
0.2532 11.0 4125 0.3512 0.855
0.2402 12.0 4500 0.3469 0.8617
0.2625 13.0 4875 0.3448 0.855
0.2773 14.0 5250 0.3426 0.8583
0.1973 15.0 5625 0.3405 0.86
0.1939 16.0 6000 0.3381 0.8633
0.2343 17.0 6375 0.3367 0.8633
0.2253 18.0 6750 0.3355 0.8667
0.2395 19.0 7125 0.3367 0.8633
0.1792 20.0 7500 0.3346 0.8667
0.2141 21.0 7875 0.3352 0.865
0.206 22.0 8250 0.3351 0.8683
0.1902 23.0 8625 0.3337 0.87
0.1953 24.0 9000 0.3324 0.8717
0.2357 25.0 9375 0.3339 0.8683
0.1602 26.0 9750 0.3324 0.8717
0.2058 27.0 10125 0.3335 0.8667
0.1817 28.0 10500 0.3349 0.87
0.1565 29.0 10875 0.3343 0.8667
0.2147 30.0 11250 0.3327 0.8717
0.1942 31.0 11625 0.3340 0.87
0.1633 32.0 12000 0.3333 0.8717
0.1571 33.0 12375 0.3335 0.8733
0.218 34.0 12750 0.3350 0.8733
0.1424 35.0 13125 0.3354 0.8783
0.1796 36.0 13500 0.3353 0.8717
0.1702 37.0 13875 0.3349 0.8767
0.161 38.0 14250 0.3343 0.875
0.1961 39.0 14625 0.3352 0.8767
0.1721 40.0 15000 0.3365 0.88
0.1561 41.0 15375 0.3358 0.8783
0.1604 42.0 15750 0.3354 0.8783
0.1786 43.0 16125 0.3364 0.8817
0.1636 44.0 16500 0.3360 0.88
0.2307 45.0 16875 0.3365 0.8783
0.1578 46.0 17250 0.3360 0.8783
0.232 47.0 17625 0.3366 0.8817
0.1744 48.0 18000 0.3365 0.88
0.1493 49.0 18375 0.3364 0.88
0.1447 50.0 18750 0.3364 0.88

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2