|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.2830 |
|
- Rouge1: 15.06 |
|
- Rouge2: 6.78 |
|
- Rougel: 14.55 |
|
- Rougelsum: 14.52 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| No log | 1.0 | 125 | 3.2940 | 14.93 | 6.52 | 14.68 | 14.68 | |
|
| No log | 2.0 | 250 | 3.2848 | 14.36 | 6.32 | 13.93 | 13.9 | |
|
| No log | 3.0 | 375 | 3.2891 | 14.01 | 6.4 | 13.68 | 13.61 | |
|
| No log | 4.0 | 500 | 3.2786 | 14.26 | 6.35 | 13.87 | 13.83 | |
|
| No log | 5.0 | 625 | 3.2825 | 14.55 | 5.54 | 14.17 | 14.14 | |
|
| No log | 6.0 | 750 | 3.2934 | 14.16 | 6.38 | 13.81 | 13.78 | |
|
| No log | 7.0 | 875 | 3.2830 | 14.83 | 6.67 | 14.43 | 14.39 | |
|
| No log | 8.0 | 1000 | 3.2830 | 15.06 | 6.78 | 14.55 | 14.52 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|