metadata
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: raid/hoangpv4/models/specialized_llm_1.5b_qwen_base_5000
results: []
See axolotl config
axolotl version: 0.5.2
base_model: /raid/HUB_LLM/Qwen2.5-1.5B
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: qwen_25
datasets:
- path: json
data_files:
- /workspace/home/namb/hoangpv4/kg_fact_checking/data/train_specialized_llm/data_ready_to_train_5000.jsonl
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
val_set_size: 0.0
output_dir: /raid/hoangpv4/models/specialized_llm_1.5b_qwen_base_5000
sequence_len: 256
sample_packing: false
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: constant
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 5
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/home/namb/hoangpv4/kg_fact_checking/axolotl_config/zero3.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
eos_token: <|im_end|>
tokens:
- "<entity>"
- "</entity>"
- "~"
raid/hoangpv4/models/specialized_llm_1.5b_qwen_base_5000
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training results
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3