setfit-proj4-label / README.md
hojzas's picture
Add SetFit model
a0c7a4c verified
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- hojzas/proj4-label
metrics:
- accuracy
widget:
- text: " perms = all_permutations_substrings(string)\n \nreturn perms.intersection(words)"
- text: ' perms = all_permutations_substrings(string)
return {i for i in words if i in perms}'
- text: ' perms = all_permutations_substrings(string)
return {word for word in words if hash(word) in {hash(looking) for looking in
perms}}'
- text: ' perms = all_permutations_substrings(string)
res = [x for x in list(perms) + words if x in list(perms) and x in words]
return set(res)'
- text: " perms = all_permutations_substrings(string)\n \nif set(words) & set(perms):\n\
\ res = (set(words) & set(perms))"
pipeline_tag: text-classification
inference: true
co2_eq_emissions:
emissions: 0.30176603615895614
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
ram_total_size: 251.49160385131836
hours_used: 0.006
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: hojzas/proj4-label
type: hojzas/proj4-label
split: test
metrics:
- type: accuracy
value: 0.9375
name: Accuracy
---
# SetFit with sentence-transformers/all-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj4-label](https://huggingface.co/datasets/hojzas/proj4-label) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 2 classes
- **Training Dataset:** [hojzas/proj4-label](https://huggingface.co/datasets/hojzas/proj4-label)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | <ul><li>" perms = all_permutations_substrings(string)\\n return set(''.join(perm) for word in words for perm in perms if word == perm)"</li><li>' perms = all_permutations_substrings(string)\\n out = set()\\n for w in words:\\n for s in perms:\\n if w == s:\\n out.add(w)\\n return out'</li><li>' perms = all_permutations_substrings(string)\\n return set(word for word in words if word in perms)'</li></ul> |
| 1 | <ul><li>' perms = all_permutations_substrings(string)\\n return perms.intersection(words)'</li><li>' perms = all_permutations_substrings(string)\\n return set.intersection(perms,words)'</li><li>' perms = all_permutations_substrings(string)\\n return set(perms).intersection(words)'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9375 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("hojzas/setfit-proj4-label")
# Run inference
preds = model(" perms = all_permutations_substrings(string)
return perms.intersection(words)")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 12 | 29.1633 | 140 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 35 |
| 1 | 14 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0081 | 1 | 0.3668 | - |
| 0.4065 | 50 | 0.0048 | - |
| 0.8130 | 100 | 0.0014 | - |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.000 kg of CO2
- **Hours Used**: 0.006 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: No GPU used
- **CPU Model**: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
- **RAM Size**: 251.49 GB
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.1
- PyTorch: 2.1.2+cu121
- Datasets: 2.14.7
- Tokenizers: 0.15.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->