|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** holy0516 |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
# 出力までの流れ |
|
- 1. 必要なライブラリのインストール・インポート |
|
2. ベースモデルの読み込みとLoRAアダプタの指定 |
|
3. Hugging Face Tokenの指定 |
|
4. 元モデルのロード |
|
5. LoRAアダプタの結合 |
|
6. タスクの読み込み |
|
7. 推論 |
|
8. 出力 |
|
|
|
# コード |
|
## 1. 必要なライブラリのインストール・インポート |
|
|
|
!pip uninstall unsloth -y |
|
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install --upgrade torch |
|
!pip install --upgrade xformers |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from unsloth import FastLanguageModel |
|
import torch |
|
from tqdm import tqdm |
|
import json |
|
|
|
## 2. ベースモデルの読み込みとLoRAアダプタの指定 |
|
|
|
model_id = "llm-jp/llm-jp-3-13b" |
|
adapter_id = "holy0516/llm-jp-3-13b-it-r1_elyza100-r4" |
|
|
|
## 3. Hugging Face Tokenの指定 |
|
(略) |
|
|
|
## 4. 元モデルのロード |
|
|
|
dtype = None # Noneにしておけば自動で設定 |
|
load_in_4bit = True # 今回は13Bモデルを扱うためTrue |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
# 5. LoRAのアダプタの統合 |
|
|
|
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) |
|
|
|
# 6. タスクの読み込み |
|
|
|
datasets = [] |
|
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
# 7. 推論 |
|
|
|
FastLanguageModel.for_inference(model) |
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
# 8. 出力結果の保存 |
|
with open(f"output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |