distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6468
- Accuracy: 0.83
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9254 | 1.0 | 113 | 1.8282 | 0.45 |
1.2779 | 2.0 | 226 | 1.2286 | 0.67 |
0.9885 | 3.0 | 339 | 1.0514 | 0.73 |
0.6829 | 4.0 | 452 | 0.8782 | 0.7 |
0.5083 | 5.0 | 565 | 0.6562 | 0.81 |
0.3546 | 6.0 | 678 | 0.6958 | 0.79 |
0.22 | 7.0 | 791 | 0.6093 | 0.81 |
0.1039 | 8.0 | 904 | 0.6242 | 0.81 |
0.1092 | 9.0 | 1017 | 0.6058 | 0.83 |
0.066 | 10.0 | 1130 | 0.6468 | 0.83 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 167
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for homerquan/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert