leaderboard-pr-bot's picture
Adding Evaluation Results
aeb692c verified
|
raw
history blame
6.48 kB
metadata
language:
  - yue
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
  - name: CantoneseLLM-6B-preview202402
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 55.63
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hon9kon9ize/CantoneseLLM-6B-preview202402
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 75.8
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hon9kon9ize/CantoneseLLM-6B-preview202402
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.07
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hon9kon9ize/CantoneseLLM-6B-preview202402
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 42.26
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hon9kon9ize/CantoneseLLM-6B-preview202402
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 74.11
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hon9kon9ize/CantoneseLLM-6B-preview202402
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 30.71
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hon9kon9ize/CantoneseLLM-6B-preview202402
          name: Open LLM Leaderboard

CantoneseLLM

This model is further pre-trained model based on 01-ai/Yi-6B with 800M tokens of Cantonese text compiled from various sources, including translated zh-yue Wikipedia, translated RTHK news datasets/jed351/rthk_news, Cantonese filtered CC100 and Cantonese textbooks generated by Gemini Pro.

This is a preview version, for experimental use only, we will use it to fine-tune on downstream tasks and evaluate the performance.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 56.93
ARC (25-shot) 55.63
HellaSwag (10-shot) 75.8
MMLU (5-shot) 63.07
TruthfulQA (0-shot) 42.26
Winogrande (5-shot) 74.11
GSM8K (5-shot) 30.71

Usage

from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("hon9kon9ize/CantoneseLLM-6B-preview202402")
model = AutoModelForMaskedLM.from_pretrained("hon9kon9ize/CantoneseLLM-6B-preview202402")

prompt = "歷經三年疫情,望穿秋水終於全面復常,隨住各項防疫措施陸續放寬以至取消,香港"

input_ids = tokenizer.encode(prompt, return_tensors="pt").to('cuda:0')
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, repetition_penalty=1.1, do_sample=True, temperature=temperature, top_k=50, top_p=0.95)
output = tokenizer.decode(output[0], skip_special_tokens=True)

# output: 歷經三年疫情,望穿秋水終於全面復常,隨住各項防疫措施陸續放寬以至取消,香港旅遊業可謂「起死回生」。
# 不過,旅遊業嘅復蘇之路並唔順利,香港遊客數量仍然遠低於疫前水平,而海外旅客亦只係恢復到疫情前約一半。有業界人士認為,當局需要進一步放寬入境檢疫措施,吸引更多國際旅客來港,令旅遊業得以真正復甦。

Limitation and Bias

The model is intended to use for Cantonese language understanding and generation tasks, it may not be suitable for other Chinese languages. The model is trained on a diverse range of Cantonese text, including news, Wikipedia, and textbooks, it may not be suitable for informal or dialectal Cantonese, it may contain bias and misinformation, please use it with caution.

We found the model is not well trained on the updated Hong Kong knowledge, it may due to the corpus is not large enough to brainwash the original model. We will continue to improve the model and corpus in the future.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 56.93
AI2 Reasoning Challenge (25-Shot) 55.63
HellaSwag (10-Shot) 75.80
MMLU (5-Shot) 63.07
TruthfulQA (0-shot) 42.26
Winogrande (5-shot) 74.11
GSM8k (5-shot) 30.71