run1

This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2153
  • Accuracy: 0.64
  • Precision: 0.6583
  • Recall: 0.64
  • F1: 0.6293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.99 53 0.6971 0.515 0.5272 0.515 0.4537
0.7029 2.0 107 0.6899 0.535 0.5413 0.535 0.5166
0.7029 2.99 160 0.6855 0.535 0.5399 0.5350 0.5203
0.6955 4.0 214 0.6698 0.565 0.5686 0.5650 0.5592
0.6955 4.99 267 0.6722 0.57 0.5703 0.5700 0.5696
0.6581 6.0 321 0.6367 0.61 0.6104 0.61 0.6096
0.6581 6.99 374 0.6973 0.58 0.5905 0.58 0.5675
0.5796 8.0 428 0.6925 0.625 0.6348 0.625 0.6180
0.5796 8.99 481 0.7539 0.61 0.6364 0.61 0.5902
0.4636 10.0 535 0.9313 0.575 0.6043 0.575 0.5429
0.4636 10.99 588 0.9028 0.615 0.6227 0.615 0.6089
0.3577 12.0 642 0.8694 0.615 0.6227 0.615 0.6089
0.3577 12.99 695 0.9201 0.635 0.6494 0.635 0.6260
0.3041 14.0 749 0.9186 0.645 0.6583 0.645 0.6374
0.3041 14.99 802 1.1683 0.63 0.6578 0.63 0.6129
0.2344 16.0 856 1.1405 0.625 0.6383 0.625 0.6158
0.2344 16.99 909 1.2451 0.625 0.6474 0.625 0.6102
0.208 18.0 963 1.1640 0.65 0.6671 0.65 0.6408
0.208 18.99 1016 1.2081 0.64 0.6583 0.64 0.6293
0.1757 19.81 1060 1.2153 0.64 0.6583 0.64 0.6293

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
22
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hongpingjun98/run1

Finetuned
(13)
this model

Evaluation results